130
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Transient expression of thyrotropin releasing hormone peptide and mRNA in the rat hippocampus following global cerebral ischemia/reperfusion injury

ORCID Icon, , &
Pages 787-801 | Received 11 Jan 2020, Accepted 19 Aug 2020, Published online: 04 Nov 2020

References

  • Boler J, Enzmann F, Folkers K, et al. The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline amide. Biochem Biophys Res Commun. 1969;37(4):705–710.
  • Fekete C, Mihaly E, Luo LG, et al. Association of cocaine- and amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic–pituitary–thyroid axis during fasting. J Neurosci. 2000;20(24):9224–9234.
  • Lechan RM, Wu P, Jackson IM. Immunocytochemical distribution in rat brain of putative peptides derived from thyrotropin-releasing hormone prohormone. Endocrinology. 1987;121(5):1879–1891.
  • Hokfelt T, Tsuruo Y, Ulfhake B, et al. Distribution of TRH-like immunoreactivity with special reference to coexistence with other neuroactive compounds. Ann N Y Acad Sci. 1989;553:76–105.
  • Sharif NA. Quantitative autoradiography of TRH receptors in discrete brain regions of different mammalian species. Ann N Y Acad Sci. 1989;553:147–175.
  • Heuer H, SchaFer MK, O'Donnell D, et al. Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rats. J Comp Neurol. 2000;428(2):319–336.
  • Joseph-Bravo P, Uribe RM, Vargas MA, et al. Multifactorial modulation of TRH metabolism. Cell Mol Neurobiol. 1998;18(2):231–247.
  • Horita A. An update on the CNS actions of TRH and its analogs. Life Sci. 1998;62(17–18):1443–1448. 1998
  • Pizzi M, Boroni F, Benarese M, et al. Neuroprotective effect of thyrotropin-releasing hormone against excitatory amino acid-induced cell death in hippocampal slices. Eur J Pharmacol. 1999;370(2):133–137.
  • Prokai L. Central nervous system effects of thyrotropin-releasing hormone and its analogues: Opportunities and perspectives for drug discovery and development. Prog Drug Res. 2002;59:133–169.
  • Gary KA, Sevarino KA, Yarbrough GG, et al. The thyrotropin-releasing hormone (TRH) hypothesis of homeostatic regulation: Implications for TRH-based therapeutics. J Pharmacol Exp Ther. 2003;305(2):410–416.
  • Deng PY, Porter JE, Shin HS, et al. Thyrotropin-releasing hormone increases GABA release in rat hippocampus. J Physiol. 2006;577(Pt 2):497–511.
  • Gutierrez-Mariscal M, de Gortari P, Lopez-Rubalcava C, et al. Analysis of the anxiolytic-like effect of TRH and the response of amygdalar TRHergic neurons in anxiety. Psychoneuroendocrinology. 2008;33(2):198–213.
  • Gutierrez-Mariscal M, Sanchez E, Rebolledo-Solleiro D, et al. The acute response of the amygdalar TRH system to psychogenic stressors varies dependent on the paradigm and circadian condition. Brain Res. 2012;1452:73–84.
  • Alexandrov AV. Current and future recanalization strategies for acute ischemic stroke. J Intern Med. 2010;267(2):209–219.
  • Amantea D, Nappi G, Bernardi G, et al. Post-ischemic brain damage: Pathophysiology and role of inflammatory mediators. FEBS J. 2009;276(1):13–26.
  • Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 1982;239(1):57–69.
  • Petito CK, Feldmann E, Pulsinelli WA, et al. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology. 1987;37(8):1281–1286.
  • Nitatori T, Sato N, Waguri S, et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci. 1995;15(2):1001–1011.
  • Shishido Y, Furushiro M, Tanabe S, et al. Effects of prolyl endopeptidase inhibitors and neuropeptides on delayed neuronal death in rats. Eur J Pharmacol. 1999;372(2):135–142. 14
  • Urayama A, Yamada S, Kimura R, et al. Neuroprotective effect and brain receptor binding of taltirelin, a novel thyrotropin-releasing hormone (TRH) analogue, in transient forebrain ischemia of C57BL/6J mice. Life Sci. 2002;72(4–5):601–607.
  • Rajput SK, Siddiqui MA, Kumar V, et al. Protective effects of L-pGlu-(2-propyl)-L-His-L-ProNH2, a newer thyrotropin releasing hormone analog in in vitro and in vivo models of cerebral ischemia. Peptides. 2011;32(6):1225–1231.
  • Pulsinelli WA, Buchan AM. The four-vessel occlusion rat model: Method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke. 1988;19(7):913–914.
  • Wang Q, Xu J, Rottinghaus GE, et al. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res. 2002;958(2):439–447.
  • Yu Q, Guo Z, Liu X, et al. Block of P2X7 receptors could partly reverse the delayed neuronal death in area CA1 of the hippocampus after transient global cerebral ischemia. Purinergic Signal. 2013;9(4):663–675.
  • Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.
  • Vorhees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–858.
  • Sui QQ, Zhu J, Li X, et al. A modified protocol for the detection of three different mRNAs with a new-generation in situ hybridization chain reaction on frozen sections. J Mol Histol. 2016;47(6):511–529.
  • Guo W, Xu X, Gao X, et al. Expression of P2X5 receptors in the mouse CNS. Neuroscience. 2008;156(3):673–692.
  • Nillni EA. Neuroregulation of ProTRH biosynthesis and processing. Endocrine. 1999;10(3):185–199.
  • Pu LP, Ma W, Barker JL, et al. Differential coexpression of genes encoding prothyrotropin-releasing hormone (pro-TRH) and prohormone convertases (PC1 and PC2) in rat brain neurons: Implications for differential processing of pro-TRH. Endocrinology. 1996;137(4):1233–1241.
  • Borlongan CV, Stahl CE, Redei E, et al. Prepro-thyrotropin-releasing hormone 178-199 exerts partial protection against cerebral ischemia in adult rats. Neuroreport. 1999;10(17):3501–3505.
  • Ploski JE, Newton SS, Duman RS. Electroconvulsive seizure-induced gene expression profile of the hippocampus dentate gyrus granule cell layer. J Neurochem. 2006;99(4):1122–1132.
  • Knoblach SM, Kubek MJ. Thyrotropin-releasing hormone release is enhanced in hippocampal slices after electroconvulsive shock. J Neurochem. 1994;62(1):119–125.
  • Knoblach SM, Kubek MJ. Increases in thyrotropin-releasing hormone messenger RNA expression induced by a model of human temporal lobe epilepsy: Effect of partial and complete kindling. Neuroscience. 1997;76(1):85–95.
  • Kubek MJ, Knoblach SM, Sharif NA, et al. Thyrotropin-releasing hormone gene expression and receptors are differentially modified in limbic foci by seizures. Ann Neurol. 1993;33(1):70–76.
  • Ogawa N, Hirose Y, Mori A, et al. Involvement of thyrotropin-releasing hormone (TRH) neural system of the brain in pentylenetetrazol-induced seizures. Regul Pept. 1985;12(3):249–256.
  • Rosen JB, Cain CJ, Weiss SR, et al. Alterations in mRNA of enkephalin, dynorphin and thyrotropin releasing hormone during amygdala kindling: An in situ hybridization study. Brain Res Mol Brain Res. 1992;15(3–4):247–255.
  • Rosen JB, Abramowitz J, Post RM. Colocalization of TRH mRNA and Fos-like immunoreactivity in limbic structures following amygdala kindling. Mol Cell Neurosci. 1993;4(4):335–342.
  • Rosen JB, Kim SY, Post RM. Differential regional and time course increases in thyrotropin-releasing hormone, neuropeptide Y and enkephalin mRNAs following an amygdala kindled seizure. Brain Res Mol Brain Res. 1994;27(1):71–80.
  • Lee SL, Stewart K, Goodman RH. Structure of the gene encoding rat thyrotropin releasing hormone. J Biol Chem. 1988;263(32):16604–16609.
  • Kamme F, Campbell K, Wieloch T. Biphasic expression of the fos and jun families of transcription factors following transient forebrain ischaemia in the rat. Effect of hypothermia. Eur J Neurosci. 1995;7(10):2007–2016.
  • Keller HH, Bartholini G, Pletscher A. Enhancement of cerebral noradrenaline turnover by thyrotropin-releasing hormone. Nature. 1974;248(448):528–529.
  • Faden AI. Pharmacological treatment of central nervous system trauma. Pharmacol Toxicol. 1996;78(1):12–17.
  • Faden AI, Demediuk P, Panter SS, et al. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science. 1989;244(4906):798–800.
  • Zhang L, Rzigalinski BA, Ellis EF, et al. Reduction of voltage-dependent Mg2+ blockade of NMDA current in mechanically injured neurons. Science. 1996;274(5294):1921–1923.
  • Michaelis EK. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol. 1998;54(4):369–415.
  • Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 1999;22(9):391–397.
  • Manaker S, Winokur A, Rostene WH, et al. Autoradiographic localization of thyrotropin-releasing hormone receptors in the rat central nervous system. J Neurosci. 1985;5(1):167–174.
  • Aragay AM, Katz A, Simon MI. The G alpha q and G alpha 11 proteins couple the thyrotropin-releasing hormone receptor to phospholipase C in GH3 rat pituitary cells. J Biol Chem. 1992;267(35):24983–24988.
  • Hsieh KP, Martin TF. Thyrotropin-releasing hormone and gonadotropin-releasing hormone receptors activate phospholipase C by coupling to the guanosine triphosphate-binding proteins Gq and G11. Mol Endocrinol. 1992;6(10):1673–1681.
  • O'Dowd BF, Lee DK, Huang W, et al. TRH-R2 exhibits similar binding and acute signaling but distinct regulation and anatomic distribution compared with TRH-R1. Mol Endocrinol. 2000;14(1):183–193.
  • Shuaib A, Ijaz S, Hemmings S, et al. Decreased glutamate release during hypothyroidism may contribute to protection in cerebral ischemia. Exp Neurol. 1994;128(2):260–265.
  • Alevizaki M, Synetou M, Xynos K, et al. Hypothyroidism as a protective factor in acute stroke patients. Clin Endocrinol. 2006;65(3):369–372.
  • Rastogi L, Godbole MM, Ray M, et al. Reduction in oxidative stress and cell death explains hypothyroidism induced neuroprotection subsequent to ischemia/reperfusion insult. Exp Neurol. 2006;200(2):290–300.
  • Rastogi L, Gupta S, Godbole MM. Pathophysiological basis for thyrotoxicosis as an aggravating factor in post-ischemic brain injury in rats. J Endocrinol. 2008;196(2):335–341.
  • Rastogi L, Godbole MM, Sinha RA, et al. Reverse triiodothyronine (rT3) attenuates ischemia-reperfusion injury. Biochem Biophys Res Commun. 2018;506(3):597–603.
  • Akhoundi FH, Ghorbani A, Soltani A, et al. Favorable functional outcomes in acute ischemic stroke patients with subclinical hypothyroidism. Neurology. 2011;77(4):349–354. 26
  • Wollenweber FA, Zietemann V, Gschwendtner A, et al. Subclinical hyperthyroidism is a risk factor for poor functional outcome after ischemic stroke. Stroke. 2013;44(5):1446–1448.
  • Jiang X, Xing H, Wu J, et al. Prognostic value of thyroid hormones in acute ischemic stroke - a meta analysis. Sci Rep. 2017;7(1):1625624
  • Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. Ilar J. 2014;55(2):310–332.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.