152
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Anti-apoptotic effect of silymarin-loaded chitosan nanoparticles on hippocampal caspase-3 and Bcl-2 expression following cerebral ischemia/reperfusion injury

, &
Pages 1102-1109 | Received 13 Aug 2020, Accepted 23 Nov 2020, Published online: 21 Jan 2021

References

  • Bilia AR, Isacchi B, Righeschi C, et al. Flavonoids loaded in nanocarriers: an opportunity to increase oral bioavailability and bioefficacy. FNS. 2014;05(13):1212–1327.
  • Lim SB, Banerjee A, Önyüksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release. 2012;163(1):34–45.
  • Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv. 2006;3(2):219–232.
  • Patel J, Jivani N. Chitosan based nanoparticles in drug delivery. Int J Pharm Sci Nanotechnol. 2009;2:517–522.
  • Ahsan SM, Thomas M, Reddy KK, et al. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol. 2018;110:97–109.
  • Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol. 2018;109:273–286.
  • Hamman JH. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs. 2010;8(4):1305–1322.
  • Mary Lazer L, Sadhasivam B, Palaniyandi K, et al. Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin. Int J Biol Macromol. 2018;107(Pt B):1988–1998. 2018/02/01/
  • Souza MP, Vaz AFM, Correia MTS, et al. Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food Bioprocess Technol. 2014;7(4):1149–1159. 01
  • Lee E, Lee J, Lee I-H, et al. Conjugated Chitosan as a novel platform for oral delivery of paclitaxel. J Med Chem. 2008;51(20):6442–6449.
  • Kandemir FM, Kucukler S, Caglayan C, et al. Therapeutic effects of silymarin and naringin on methotrexate-induced nephrotoxicity in rats: Biochemical evaluation of anti-inflammatory, antiapoptotic, and antiautophagic properties. J Food Biochem. 2014;41(5):e12398.
  • Ashkavand Z, Malekinejad H, Amniattalab A, et al. Silymarin potentiates the anti-inflammatory effects of Celecoxib on chemically induced osteoarthritis in rats. Phytomed. 2012;19(13):1200–1205.
  • Surai PF. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants (Basel)). 2015;4(1):204–247.
  • Javed S, Kohli K, Ali M. Reassessing bioavailability of silymarin. Altern Med Rev. 2011;16(3):239–249.
  • Younis N, Shaheen MA, Abdallah MH. Silymarin-loaded Eudragit(®) RS100 nanoparticles improved the ability of silymarin to resolve hepatic fibrosis in bile duct ligated rats. Biomed Pharmacother. 2016; 81:93–103.
  • FeNyVeSI F, PéTeRVÁRI M, NAGy L, et al. Solubility increasing experiments of sylimarin with cyclodextrins. J Méd Aradean. 2011;14(13):13–17.
  • Peng Q, Zhang Z-R, Sun X, et al. Mechanisms of phospholipid complex loaded nanoparticles enhancing the oral bioavailability. Mol Pharm. 2010;7(2):565–575.
  • Yang KY, Hwang DH, Yousaf AM, et al. Silymarin-loaded solid nanoparticles provide excellent hepatic protection: physicochemical characterization and in vivo evaluation. Int J Nanomed. 2013;8:3333–3343.
  • Wu W, Wang Y, Que L. Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur J Pharm Biopharm. 2006;63(3):288–294.
  • Hwang DH, Kim Y-I, Cho KH, et al. A novel solid dispersion system for natural product-loaded medicine: silymarin-loaded solid dispersion with enhanced oral bioavailability and hepatoprotective activity. J Microencapsul. 2014;31(7):619–626.
  • Chumboatong W, Thummayot S, Govitrapong P, et al. Neuroprotection of agomelatine against cerebral ischemia/reperfusion injury through an antiapoptotic pathway in rat. Neurochem Int. 2017;102:114–122.
  • Farkas E, Luiten PGM, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev. 2007; 2007/04/01/54(1):162–180.
  • Niu Q, Yang Y, Zhang Q, et al. The relationship between Bcl-gene expression and learning and memory impairment in chronic aluminum-exposed rats. Neurotox Res. 2007;12(3):163–169.
  • Yin B, Liang H, Chen Y, et al. EGB1212 post-treatment ameliorates hippocampal CA1 neuronal death and memory impairment induced by transient global cerebral ischemia/reperfusion. Am J Chin Med. 2013;41(6):1329–1341.
  • Bendel O, Bueters T, von Euler M, et al. Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory. J Cereb Blood Flow Metab. 2005;25(12):1586–1595.
  • Aboutaleb N, Shamsaei N, Khaksari M, et al. Pre-ischemic exercise reduces apoptosis in hippocampal CA3 cells after cerebral ischemia by modulation of the Bax/Bcl-2 proteins ratio and prevention of caspase-3 activation. J Physiol Sci. 2015;65(5):435–443.
  • Abdel-Aleem GA, Khaleel EF, Mostafa DG, et al. Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway. Arch Physiol Biochem. 2016;122(4):200–213.
  • Moghaddam AH, Mokhtari Sangdehi SR, Ranjbar M, et al. Preventive effect of silymarin-loaded chitosan nanoparticles against global cerebral ischemia/reperfusion injury in rats. Eur J Pharmacol. 2020;877:173066.
  • Zhang R, Xue G, Wang S, et al. Novel object recognition as a facile behavior test for evaluating drug effects in AβPP/PS1 Alzheimer's disease mouse model. J Alzheimers Dis. 2012;31(4):801–812.
  • Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012;13(2):93–110. 2012/05/01
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248–254.
  • Fukuzawa K, Tokumura A. Glutathione peroxidase activity in tissues of vitamin e-deficient mice. J Nutr Sci Vitaminol (Tokyo)). 1976;22(5):405–407.
  • Esterbauer H, Cheeseman K. Determination of aldehydic lipid peroxidation products malonaldehyde and 4 hydroxynonenal. Methods Enzymol. 1990;186:407–421.
  • Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–474.
  • Aebi H. Catalase. In: Bergmeyer HU, editor. Methods of enzymatic analysis. (2nd ed.). New York (NY): Academic Press; 1974, p. 673–684.
  • Pinto RE, Bartley W. The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem J. 1969;112(1):109–115.
  • Rotruck JT, Pope AL, Ganther HE, et al. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179(4073):588–590.
  • Pullela R, Raber J, Pfankuch T, et al. Traumatic injury to the immature brain results in progressive neuronal loss, hyperactivity and delayed cognitive impairments. Dev Neurosci. 2006;28(4-5):396–409.
  • de la Tremblaye PB, Plamondon H. Impaired conditioned emotional response and object recognition are concomitant to neuronal damage in the amygdala and perirhinal cortex in middle-aged ischemic rats. Behav Brain Res. 2011;219(2):227–233.
  • Hartman RE, Lee JM, Zipfel GJ, et al. Characterizing learning deficits and hippocampal neuron loss following transient global cerebral ischemia in rats. Brain Res. 2005;1043(1-2):48–56.
  • Muley MM, Thakare VN, Patil RR, et al. Silymarin improves the behavioural, biochemical and histoarchitecture alterations in focal ischemic rats: A comparative evaluation with piracetam and protocatachuic acid. Pharmacol Biochem Behav. 2012;102(2):286–293.
  • Jin G, Bai D, Yin S, et al. Silibinin rescues learning and memory deficits by attenuating microglia activation and preventing neuroinflammatory reactions in SAMP8 mice. Neurosci Lett. 2016;629:256–261.
  • Muley MM, Thakare VN, Patil RR, et al. Amelioration of cognitive, motor and endogenous defense functions with silymarin, piracetam and protocatechuic acid in the cerebral global ischemic rat model. Life Sci. 2013;93(1):51–57.
  • Yaghmaei P, Parivar K, Masoudi A, et al. The effect of silybin on passive avoidance learning and pathological changes in hippocampal CA1 and DG regions in male Wistar rats offspring. J Asian Nat Prod Res. 2009;11(6):514–522.
  • Wei T, Chen C, Hou J, et al. Nitric oxide induces oxidative stress and apoptosis in neuronal cells. Biochim Biophys Acta. 2000;1498(1):72–79.
  • Maiti P, Singh SB, Mallick B, et al. High altitude memory impairment is due to neuronal apoptosis in hippocampus, cortex and striatum. J Chem Neuroanat. 2008;36(3-4):227–238.
  • El-Demerdash FM, Nasr HM. Antioxidant effect of selenium on lipid peroxidation, hyperlipidemia and biochemical parameters in rats exposed to diazinon. J Trace Elem Med Biol. 2014;28(1):89–93.
  • Yücel A, Aydogan MS, Ucar M, et al. Effects of apocynin on liver ischemia-reperfusion injury in rats. Transplantation Proceedings. 2019;51(4):1180–1183.
  • Horikoshi S, Nakamura K, Kawaguchi M, et al. Effect of microwave radiation on the activity of catalase. decomposition of hydrogen peroxide under microwave and conventional heating. RSC Adv. 2016;6(53):48237–48244.
  • Baeza I, Fdez-Tresguerres J, Ariznavarreta C, et al. Effects of growth hormone, melatonin, oestrogens and phytoestrogens on the oxidized glutathione (GSSG)/reduced glutathione (GSH) ratio and lipid peroxidation in aged ovariectomized rats. Biogerontology. 2010;11(6):687–701.
  • Thakare VN, Dhakane VD, Patel BM. Potential antidepressant-like activity of silymarin in the acute restraint stress in mice: Modulation of corticosterone and oxidative stress response in cerebral cortex and hippocampus. Pharmacol Rep. 2016;68(5):1020–1027.
  • Manzanero S, Santro T, Arumugam TV. Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell injury. Neurochem Int. 2013;62(5):712–718. 2013/04/01/
  • Boisguerin P, Redt-Clouet C, Franck-Miclo A, et al. Systemic delivery of BH4 anti-apoptotic peptide using CPPs prevents cardiac ischemia-reperfusion injuries in vivo. J Control Release. 2011;156(2):146–153.
  • Katiyar SK, Roy AM, Baliga MS. Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol Cancer Ther. 2005;4(2):207–216.
  • Wang T-D, Chen W-J, Su SS-Y, et al. Increased cardiomyocyte apoptosis following ischemia and reperfusion in diet-induced hypercholesterolemia: Relation to Bcl-2 and bax proteins and caspase-3 activity. Lipids. 2002;37(4):385–394.
  • Xi H-j, Zhang T-h, Tao T, et al. Propofol improved neurobehavioral outcome of cerebral ischemia-reperfusion rats by regulating Bcl-2 and Bax expression. Brain Res. 2011;1410:24–32.
  • Liu G, Wang TAO, Wang T, et al. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats. Biomed Rep. 2013;1(6):861–867.
  • Tan J, Hu J, He Y, et al. RETRACTED ARTICLE: Protective role of silymarin in a mouse model of renal Ischemia–Reperfusion injury. Diagn Pathol. 2015;10(1):198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.