208
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Stroke risk in multiple sclerosis: a critical appraisal of the literature

, ORCID Icon, , , &
Pages 1132-1152 | Received 21 Apr 2021, Accepted 14 Mar 2022, Published online: 03 Apr 2022

References

  • Sacco RL, Benjamin EJ, Broderick JP, et al. American Heart Association Prevention Conference. IV. Prevention and rehabilitation of stroke. Risk factors. Stroke. 1997;28(7):1507–1517.
  • Boehme AK, Esenwa C, Elkind MSV. Stroke risk factors, genetics, and prevention. Circ Res. 2017;120(3):472–495.
  • Wafa HA, Wolfe CDA, Emmett E, et al. Burden of stroke in Europe: thirty-year projections of incidence, prevalence, deaths, and disability-adjusted life years. Stroke. 2020;51(8):2418–2427.
  • Appelros P, Stegmayr B, Terént A. Sex differences in stroke epidemiology: a systematic review. Stroke. 2009;40(4):1082–1090.
  • Marrugat J, Arboix A, García-Eroles L, et al. [The estimated incidence and case fatality rate of ischemic and hemorrhagic cerebrovascular disease in 2002 in Catalonia]. Rev Esp Cardiol. 2007;60(6):573–580.
  • Parikh Neal S, Merkler Alexander E, Iadecola C. Inflammation, autoimmunity, infection, and stroke: epidemiology and lessons from therapeutic intervention, autoimmunity, infection, and stroke. Stroke. 2020;51(3):711–718.
  • Putnam T. Lesions of encephalomyelitis and multiple sclerosis: venous thrombosis as the primary alteration. JAMA. 1937;108(18):1477–1480.
  • Koudriavtseva T. Thrombotic processes in multiple sclerosis as manifestation of innate immune activation. Front Neurol. 2014;5:119–119.
  • Sternberg Z. Genetic, epigenetic, and environmental factors influencing neurovisceral integration of cardiovascular modulation: Focus on multiple sclerosis. Neuromolecular Med. 2016;18(1):16–36.
  • van Noort JM, Baker D, Amor S. Mechanisms in the development of multiple sclerosis lesions: reconciling autoimmune and neurodegenerative factors. CNS Neurol Disord Drug Targets. 2012;11(5):556–569.
  • Christiansen CF. Risk of vascular disease in patients with multiple sclerosis: a review. Neurol Res. 2012;34(8):746–753.
  • Petersen MA, Ryu JK, Akassoglou K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat Rev Neurosci. 2018;19(5):283–301.
  • Zhang X, Zhang F, Huang D, et al. Contribution of gray and white matter abnormalities to cognitive impairment in multiple sclerosis. IJMS. 2016;18(1):46.
  • Weiner HL. The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease? Ann Neurol. 2009;65(3):239–248.
  • Okuda DT, Mowry EM, Beheshtian A, et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology. 2009;72(9):800–805.
  • Jadidi E, Mohammadi M, Moradi T. High risk of cardiovascular diseases after diagnosis of multiple sclerosis. Mult Scler. 2013;19(10):1336–1340.
  • Christiansen CF, Christensen S, Farkas DK, et al. Risk of arterial cardiovascular diseases in patients with multiple sclerosis: a population-based cohort study. Neuroepidemiology. 2010;35(4):267–274.
  • Zöller B, Li X, Sundquist J, et al. Risk of subsequent ischemic and hemorrhagic stroke in patients hospitalized for immune-mediated diseases: a nationwide follow-up study from Sweden. BMC Neurol. 2012;12:41–41.
  • Lavela SL, Prohaska TR, Furner S, et al. Chronic diseases in male veterans with multiple sclerosis. Prev Chronic Dis. 2012;9:E55–E55.
  • Allen NB, Lichtman JH, Cohen HW, et al. Vascular disease among hospitalized multiple sclerosis patients. Neuroepidemiology. 2008;30(4):234–238.
  • Thormann A, Magyari M, Koch-Henriksen N, et al. Vascular comorbidities in multiple sclerosis: a nationwide study from Denmark. J Neurol. 2016;263(12):2484–2493.
  • Kang JH, Chen YH, Lin HC. Comorbidities amongst patients with multiple sclerosis: a population-based controlled study. Eur J Neurol. 2010;17(9):1215–1219.
  • Tseng CH, Huang WS, Lin CL, et al. Increased risk of ischaemic stroke among patients with multiple sclerosis. Eur J Neurol. 2015;22(3):500–506.
  • Capkun G, Dahlke F, Lahoz R, et al. Mortality and comorbidities in patients with multiple sclerosis compared with a population without multiple sclerosis: an observational study using the US department of defense administrative claims database. Mult Scler Relat Disord. 2015;4(6):546–554.
  • Hong Y, Tang HR, Ma M, et al. Multiple sclerosis and stroke: a systematic review and meta-analysis. BMC Neurol. 2019;19(1):139.
  • Edwards NC, Munsell M, Menzin J, et al. Comorbidity in US patients with multiple sclerosis. PROM. 2018;ume 9:97–102.
  • Speciale L, Sarasella M, Ruzzante S, et al. Endothelin and nitric oxide levels in cerebrospinal fluid of patients with multiple sclerosis. J Neurovirol. 2000;6(Suppl 2):S62–S6.
  • Marrie RA, Reider N, Cohen J, et al. A systematic review of the incidence and prevalence of cardiac, cerebrovascular, and peripheral vascular disease in multiple sclerosis. Mult Scler. 2015;21(3):318–331.
  • Magyari M, Sorensen PS. Comorbidity in multiple sclerosis. Front Neurol. 2020;11:851–851.
  • Ikram A, Farooqui M, Qeadan F, et al. Abstract WMP55: Increased risk of acute ischemic stroke in multiple sclerosis: Analysis of a large national cohort. Stroke. 2019;50(Suppl_1):AWMP55–AWMP55.
  • Belliston S, Dubinsky RM, Lynch S. Cerebrovascular comorbidities in multiple sclerosis. Analysis of the nationwide inpatient sample. Neurol Disord Stroke Int. 2018;1(2):1012.
  • Zulfiqar M, Qeadan F, Ikram A, et al. Intracerebral hemorrhage in multiple sclerosis: a retrospective cohort study. J Stroke Cerebrovasc Dis. 2019;28(2):267–275.
  • Krökki O, Bloigu R, Ansakorpi H, et al. Neurological comorbidity and survival in multiple sclerosis. Mult Scler Relat Disord. 2014;3(1):72–77.
  • Marrie RA, Elliott L, Marriott J, et al. Effect of comorbidity on mortality in multiple sclerosis. Neurology. 2015;85(3):240–247.
  • Roshanisefat H, Bahmanyar S, Hillert J, et al. Multiple sclerosis clinical course and cardiovascular disease risk - Swedish cohort study. Eur J Neurol. 2014;21(11):1353–1e88.
  • Jakimovski D, Topolski M, Genovese AV, et al. Vascular aspects of multiple sclerosis: emphasis on perfusion and cardiovascular comorbidities. Expert Rev Neurother. 2019;19(5):445–458.
  • Marrie RA, Yu BN, Leung S, et al. Prevalence and incidence of ischemic heart disease in multiple sclerosis: a population-based validation study. Mult Scler Relat Disord. 2013;2(4):355–361.
  • Marrie RA, Fisk J, Tremlett H, et al. Differing trends in the incidence of vascular comorbidity in MS and the general population. Neurol Clin Pract. 2016;6(2):120–128.
  • Ramagopalan SV, Wotton CJ, Handel AE, et al. Risk of venous thromboembolism in people admitted to hospital with selected immune-mediated diseases: record-linkage study. BMC Med. 2011;9:1.
  • Peeters PJHL, Bazelier MT, Uitdehaag BMJ, et al. The risk of venous thromboembolism in patients with multiple sclerosis: the clinical practice research datalink. J Thromb Haemost. 2014;12(4):444–451.
  • Arpaia G, Bavera PM, Caputo D, et al. Risk of deep venous thrombosis (DVT) in bedridden or wheelchair-bound multiple sclerosis patients: a prospective study. Thromb Res. 2010;125(4):315–317.
  • Kaufman J, Khatri BO, Riendl P. Are patients with multiple sclerosis protected from thrombophlebitis and pulmonary embolism? Chest. 1988;94(5):998–1001.
  • Persson R, Lee S, Yood MU, et al. Incident cardiovascular disease in patients diagnosed with multiple sclerosis: a multi-database study. Mult Scler Relat Disord. 2020;37:101423.
  • Khedr AA, Canaple S, Monet P, et al. MRI and magnetic resonance angiography findings in patients with multiple sclerosis mimicked by stroke. J Clin Neurosci. 2013;20(8):1163–1164.
  • Ifergan H, Amelot A, Ismail M, et al. Stroke-mimics in stroke-units. Evaluation after changes imposed by randomized trials. Arq Neuropsiquiatr. 2020;78(2):88–95.
  • Zhang Y, Fan S, Han F, et al. Paroxysmal symptoms as the first manifestation of multiple sclerosis mimicking a transient ischemic attack: a report of two cases. Front Neurol. 2017;8:585–585.
  • Tettey P, Simpson S, Jr., Taylor BV, et al. Vascular comorbidities in the onset and progression of multiple sclerosis. J Neurol Sci. 2014;347(1-2):23–33.
  • Marrie RA, Rudick R, Horwitz R, et al. Vascular comorbidity is associated with more rapid disability progression in multiple sclerosis. Neurology. 2010;74(13):1041–1047.
  • Park K, Bavry AA. Risk of stroke associated with nonsteroidal anti-inflammatory drugs. Vasc Health Risk Manag. 2014;10:25–32.
  • Christensen S, Farkas DK, Pedersen L, et al. Multiple sclerosis and risk of venous thromboembolism: a population-based cohort study. Neuroepidemiology. 2012;38(2):76–83.
  • Mincu RI, Magda LS, Florescu M, et al. Cardiovascular dysfunction in multiple sclerosis. Maedica (Bucur). 2015;10(4):364–370.
  • Caprio MG, Russo C, Giugliano A, et al. Vascular disease in patients with multiple sclerosis: a review. Vasc Med Surg. 2016;4(2):1000259.
  • Ahmed O, Geraldes R, DeLuca GC, et al. Multiple sclerosis and the risk of systemic venous thrombosis: a systematic review. Mult Scler Relat Disord. 2019;27:424–430.
  • Lalmohamed A, Bazelier MT, Van Staa TP, et al. Causes of death in patients with multiple sclerosis and matched referent subjects: a population-based cohort study. Eur J Neurol. 2012;19(7):1007–1014.
  • Murtonen A, Kurki S, Hänninen K, et al. Common comorbidities and survival in MS: Risk for stroke, type 1 diabetes and infections. Mult Scler Relat Disord. 2018;19:109–114.
  • Kingwell E, Zhu F, Evans C, et al. Causes that contribute to the excess mortality risk in multiple sclerosis: a population-based study. Neuroepidemiology. 2020;54(2):131–139.
  • Lassmann H. Hypoxia-like tissue injury as a component of multiple sclerosis lesions. J Neurol Sci. 2003;206(2):187–191.
  • Celarain N, Tomas-Roig J. Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. J Neuroinflammation. 2020;17(1):21.
  • Handel AE, Handunnetthi L, Giovannoni G, et al. Genetic and environmental factors and the distribution of multiple sclerosis in Europe. Eur J Neurol. 2010;17(9):1210–1214.
  • Alexander JS, Zivadinov R, Maghzi AH, et al. Multiple sclerosis and cerebral endothelial dysfunction: mechanisms. Pathophysiology. 2011;18(1):3–12.
  • Zhao Z, Nelson AR, Betsholtz C, et al. Establishment and dysfunction of the blood-brain barrier. Cell. 2015;163(5):1064–1078.
  • Sheikh MH, Henson SM, Loiola RA, et al. Immuno-metabolic impact of the multiple sclerosis patients’ sera on endothelial cells of the blood-brain barrier. J Neuroinflammation. 2020;17(1):153.
  • Lopes Pinheiro MA, Kooij G, Mizee MR, et al. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta. 2016;1862(3):461–471.
  • Levard D, Buendia I, Lanquetin A, et al. Filling the gaps on stroke research: Focus on inflammation and immunity. Brain Behav Immun. 2021;91:649–667.
  • Plantone D, Inglese M, Salvetti M, et al. A perspective of coagulation dysfunction in multiple sclerosis and in experimental allergic encephalomyelitis. Front Neurol. 2019;9(1175):1175.
  • Ziliotto N, Bernardi F, Jakimovski D, et al. Coagulation pathways in neurological diseases: multiple sclerosis. Front Neurol. 2019;10:409–409.
  • Koike H, Katsuno M. Macrophages and autoantibodies in demyelinating diseases. Cells. 2021;10(4):844.
  • Zhao J, Roberts A, Wang Z, et al. Emerging role of PD-1 in the central nervous system and brain diseases. Neurosci Bull. 2021;37(8):1188–1202.
  • Arsovska A, Arsovski Z, Popovski A. 345 autoimmune diseases and risk of stroke. World Allerg Organ J. 2012;5(Suppl 2):S128–S128.
  • Baena-Díez JM, Garcia-Gil M, Comas-Cufí M, et al. Association between chronic immune-mediated inflammatory diseases and cardiovascular risk. Heart. 2018;104(2):119–126.
  • Khosravaniardakani S, Handjani F, Alimohammadi R, et al. Frequency of neurological disorders in bullous pemphigoid patients: a cross-sectional study. Int Scholar Res Notice. 2017;2017:6053267.
  • Packer M. Potential role of atrial myopathy in the pathogenesis of stroke in rheumatoid arthritis and psoriasis: a conceptual framework and implications for prophylaxis. J Am Heart Assoc. 2020;9(3):e014764.
  • Sitaru C. Bullous pemphigoid: a prototypical antibody-mediated organ-specific autoimmune disease. J Invest Dermatol. 2009;129(4):822–824.
  • Tarazona M, Mota A, Gripp A, et al. Bullous pemphigoid and neurological disease: statistics from a dermatology service. An Bras Dermatol. 2015;90(2):280–282.
  • Yang Y-W, Chen Y-H, Xirasagar S, et al. Increased risk of stroke in patients with bullous pemphigoid. Stroke. 2011;42(2):319–323.
  • Zha AM, Di Napoli M, Behrouz R. Prevention of stroke in rheumatoid arthritis. Curr Neurol Neurosci Rep. 2015;15(12):77.
  • Hsu PS, Lin HH, Li CR, et al. Increased risk of stroke in patients with osteoarthritis: a population-based cohort study. Osteoarthr Cartil. 2017;25(7):1026–1031.
  • Boehncke W-H. Systemic inflammation and cardiovascular comorbidity in psoriasis patients: Causes and consequences. Front Immunol. 2018;9:579.
  • Wiseman SJ, Ralston SH, Wardlaw JM. Cerebrovascular disease in rheumatic diseases. Stroke. 2016;47(4):943–950.
  • Maher P, Currais A, Schubert D. Using the oxytosis/ferroptosis pathway to understand and treat age-associated neurodegenerative diseases. Cell Chem Biol. 2020;27(12):1456–1471.
  • Ren JX, Li C, Yan XL, et al. Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: possible targets and molecular mechanisms. Oxid Med Cell Longev. 2021;2021:6643382.
  • Alfieri DF, Lehmann MF, Flauzino T, et al. Immune-Inflammatory, metabolic, oxidative, and nitrosative stress biomarkers predict acute ischemic stroke and short-term outcome. Neurotox Res. 2020;38(2):330–343.
  • Flauzino T, Simão ANC, de Carvalho Jennings Pereira WL, et al. Disability in multiple sclerosis is associated with age and inflammatory, metabolic and oxidative/nitrosative stress biomarkers: results of multivariate and machine learning procedures. Metab Brain Dis. 2019;34(5):1401–1413.
  • Reiche EMV, Gelinksi JR, Alfieri DF, et al. Immune-inflammatory, oxidative stress and biochemical biomarkers predict short-term acute ischemic stroke death. Metab Brain Dis. 2019;34(3):789–804.
  • Carbonell T, Rama R. Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem. 2007;14(8):857–874.
  • Tan Q, Fang Y, Gu Q. Mechanisms of modulation of ferroptosis and its role in central nervous system diseases. Front Pharmacol. 2021;12:657033.
  • Sen MK, Almuslehi MSM, Shortland PJ, et al. Revisiting the pathoetiology of multiple sclerosis: Has the tail been wagging the mouse? Front Immunol. 2020;11(2374):572186.
  • Balasa R, Barcutean L, Balasa A, et al. The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis. Hum Immunol. 2020;81(5):237–243.
  • Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 2011;74(1):1–13.
  • Xu S, Cao X. Interleukin-17 and its expanding biological functions. Cell Mol Immunol. 2010;7(3):164–174.
  • Pawluk H, Woźniak A, Grześk G, et al. The role of selected pro-inflammatory cytokines in pathogenesis of ischemic stroke. Clin Interv Aging. 2020;15:469–484.
  • Lambertsen KL, Biber K, Finsen B. Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab. 2012;32(9):1677–1698.
  • Ramiro L, Abraira L, Quintana M, et al. Blood biomarkers to predict long-term mortality after ischemic stroke. Life (Basel. 2021;11(2):135. ).
  • Horstman LL, Jy W, Ahn YS, et al. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation. 2010;7(1):10.
  • Saluk-Bijak J, Dziedzic A, Bijak M. Pro-thrombotic activity of blood platelets in multiple sclerosis. Cells. 2019;8(2):110.
  • Sheremata WA, Jy W, Horstman LL, et al. Evidence of platelet activation in multiple sclerosis. J Neuroinflammation. 2008;5(1):27.
  • Vries H, Schwaninger M. Neuroinflammation: a common denominator for stroke, multiple sclerosis and alzheimer’s disease. Biochimica Biophysica Acta (BBA) Mol Basis Dis. 2016;1862(3):297–298.
  • Rawish E, Nording H, Münte T, et al. Platelets as mediators of neuroinflammation and thrombosis. Front Immunol. 2020;11:548631.
  • Kocovski P, Jiang X, D’Souza C, et al. Platelet depletion is effective in ameliorating anxiety-like behavior and reducing the Pro-Inflammatory environment in the hippocampus in murine experimental autoimmune encephalomyelitis. JCM. 2019;8(2):162.
  • Dziedzic A, Miller E, Bijak M, et al. Increased Pro-Thrombotic platelet activity associated with thrombin/PAR1-dependent pathway disorder in patients with secondary progressive multiple sclerosis. Int J Mol Sci. 2020;21(20):7722.
  • Han MH, Hwang SI, Roy DB, et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature. 2008;451(7182):1076–1081.
  • Frischer JM, Weigand SD, Guo Y, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol. 2015;78(5):710–721.
  • Lassmann H, van Horssen J. Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta. 2016;1862(3):506–510.
  • Choi IY, Lee P, Adany P, et al. In vivo evidence of oxidative stress in brains of patients with progressive multiple sclerosis. Mult Scler. 2018;24(8):1029–1038.
  • Dziedzic A, Morel A, Miller E, et al. Oxidative damage of blood platelets correlates with the degree of ­psychophysical disability in secondary progressive multiple sclerosis. Oxid Med Cell Longev. 2020;2020:1–12.
  • Mezzaroba L, Simão ANC, Oliveira SR, et al. Antioxidant and anti-inflammatory diagnostic biomarkers in multiple sclerosis: a machine learning study. Mol Neurobiol. 2020;57(5):2167–2178.
  • de Carvalho Jennings Pereira WL, Flauzino T, Alfieri DF, et al. Immune-inflammatory, metabolic and hormonal biomarkers are associated with the clinical forms and disability progression in patients with multiple sclerosis: a follow-up study. J Neurol Sci. 2020;410:116630.
  • Stoessel D, Stellmann JP, Willing A, et al. Metabolomic profiles for primary progressive multiple sclerosis stratification and disease course monitoring. Front Hum Neurosci. 2018;12:226.
  • Del Boccio P, Pieragostino D, Di Ioia M, et al. Lipidomic investigations for the characterization of circulating serum lipids in multiple sclerosis. J Proteomics. 2011;74(12):2826–2836.
  • Andreoli VM, Maffei F, Tonon GC, et al. Significance of plasma lysolecithin in patients with multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry. 1973;36(4):661–667.
  • Farooqui AA, Horrocks LA. Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist. 2006;12(3):245–260.
  • Sternberg Z, Drake A, Sternberg DS, et al. Lp-PLA2: inflammatory biomarker of vascular risk in multiple sclerosis. J Clin Immunol. 2012;32(3):497–504.
  • Li H, Chen L, Ma X, et al. Shared gene expression between multiple sclerosis and ischemic stroke. Front Genet. 2019;9:598–598.
  • Tian Z, Song Y, Yao Y, et al. Genetic etiology shared by multiple sclerosis and ischemic stroke. Front Genet. 2020;11:646.
  • Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–219.
  • Albrekkan FM, Bachir S, Jumaa MA, et al. Is there a genetic correlation between multiple sclerosis and cerebral aneurysms? World Neurosurg. 2016;95:624.e1–e4.
  • Tseveleki V, Rubio R, Vamvakas S-S, et al. Comparative gene expression analysis in mouse models for multiple sclerosis, alzheimer’s disease and stroke for identifying commonly regulated and disease-specific gene changes. Genomics. 2010;96(2):82–91.
  • Reeves MJ, Bushnell CD, Howard G, et al. Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol. 2008;7(10):915–926.
  • Arboix A, Cartanyà A, Lowak M, et al. Gender differences and woman-specific trends in acute stroke: results from a hospital-based registry (1986-2009. Clin Neurol Neurosurg. 2014;127:19–24. )
  • Harbo HF, Gold R, Tintoré M. Sex and gender issues in multiple sclerosis. Ther Adv Neurol Disord. 2013;6(4):237–248.
  • Liu S, Chan W-S, Ray JG, et al. Stroke and cerebrovascular disease in pregnancy. Stroke. 2019;50(1):13–20.
  • Nguyen AL, Vodehnalova K, Kalincik T, et al. Association of pregnancy with the onset of clinically isolated syndrome. JAMA Neurol. 2020;77(12):1496–1503.
  • Lebrun C, Le Page E, Kantarci O, et al. Impact of pregnancy on conversion to clinically isolated syndrome in a radiologically isolated syndrome cohort. Mult Scler. 2012;18(9):1297–1302.
  • Pinhas-Hamiel O, Livne M, Harari G, et al. Prevalence of overweight, obesity and metabolic syndrome components in multiple sclerosis patients with significant disability. Eur J Neurol. 2015;22(9):1275–1279.
  • Amato MP, Derfuss T, Hemmer B, et al. Environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Mult Scler. 2018;24(5):590–603.
  • Kowalec K, McKay KA, Patten SB, et al. Comorbidity increases the risk of relapse in multiple sclerosis: a prospective study. Neurology. 2017;89(24):2455–2461.
  • Salter A, Kowalec K, Fitzgerald KC, et al. Comorbidity is associated with disease activity in MS: findings from the CombiRx trial. Neurology. 2020;95(5):e446–e456.
  • Kalanie H, Harandi AA, Alidaei S, et al. Venous thrombosis in multiple sclerosis patients after high-dose intravenous methylprednisolone: the preventive effect of enoxaparin. Thrombosis. 2011;2011:785459.
  • Dossi DE, Chaves H, Heck ES, et al. Effects of systolic blood pressure on brain integrity in multiple sclerosis. Front Neurol. 2018;9:487–487.
  • Kappus N, Weinstock-Guttman B, Hagemeier J, et al. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87(2):181–187.
  • Farez MF, Fiol MP, Gaitán MI, et al. Sodium intake is associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatr. 2015;86(1):26–31.
  • Tun NN, Arunagirinathan G, Munshi SK, et al. Diabetes mellitus and stroke: a clinical update. World J Diabetes. 2017;8(6):235–248.
  • Zöller B, Li X, Sundquist J, et al. Risk of pulmonary embolism in patients with autoimmune disorders: a nationwide follow-up study from Sweden. Lancet. 2012;379(9812):244–249.
  • Segal JB, Powe NR. Prevalence of immune thrombocytopenia: analyses of administrative data. J Thromb Haemost. 2006;4(11):2377–2383.
  • Koudriavtseva T, Plantone D, Renna R, et al. Interferon-β therapy and risk of thrombocytopenia in multiple sclerosis patients. Neurol Sci. 2015;36(12):2263–2268.
  • Jy W, Horstman LL, Arce M, et al. Clinical significance of platelet microparticles in autoimmune thrombocytopenias. J Lab Clin Med. 1992;119(4):334–345.
  • Rosso M, Chitnis T. Association between cigarette smoking and multiple sclerosis: a review. JAMA Neurol. 2020;77(2):245–253.
  • Zivadinov R, Weinstock-Guttman B, Hashmi K, et al. Smoking is associated with increased lesion volumes and brain atrophy in multiple sclerosis. Neurology. 2009;73(7):504–510.
  • Degelman ML, Herman KM. Smoking and multiple sclerosis: a systematic review and meta-analysis using the bradford hill criteria for causation. Mult Scler Relat Disord. 2017;17:207–216.
  • Sundström P, Nyström L. Smoking worsens the prognosis in multiple sclerosis. Mult Scler. 2008;14(8):1031–1035.
  • Petersen ER, Oturai AB, Koch-Henriksen N, et al. Smoking affects the interferon beta treatment response in multiple sclerosis. Neurology. 2018;90(7):e593–e600.
  • Petersen ER, Søndergaard HB, Laursen JH, et al. Smoking is associated with increased disease activity during natalizumab treatment in multiple sclerosis. Mult Scler. 2019;25(9):1298–1305.
  • Hersh CM, Harris H, Ayers M, et al. Effect of tobacco use on disease activity and DMT discontinuation in multiple sclerosis patients treated with dimethyl fumarate or fingolimod. Mult Scler J Exp Transl Clin. 2020;6(4):2055217320959815.
  • Dalgas U, Stenager E. Exercise and disease progression in multiple sclerosis: can exercise slow down the progression of multiple sclerosis? Ther Adv Neurol Disord. 2012;5(2):81–95.
  • Bovill EG, van der Vliet A. Venous valvular stasis-associated hypoxia and thrombosis: what is the link? Annu Rev Physiol. 2011;73:527–545.
  • Ranadive SM, Yan H, Weikert M, et al. Vascular dysfunction and physical activity in multiple sclerosis. Med Sci Sports Exerc. 2012;44(2):238–243.
  • Mokry LE, Ross S, Ahmad OS, et al. Vitamin D and risk of multiple sclerosis: a mendelian randomization study. PLoS Med. 2015;12(8):e1001866.
  • Simon KC, Munger KL, Ascherio A. Vitamin D and multiple sclerosis: epidemiology, immunology, and genetics. Curr Opin Neurol. 2012;25(3):246–251.
  • Tzartos JS, Khan G, Vossenkamper A, et al. Association of innate immune activation with latent Epstein-Barr virus in active MS lesions. Neurology. 2012;78(1):15–23.
  • Thacker EL, Mirzaei F, Ascherio A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann Neurol. 2006;59(3):499–503.
  • Oliveira SR, Simão ANC, Alfieri DF, et al. Vitamin D deficiency is associated with disability and disease progression in multiple sclerosis patients independently of oxidative and nitrosative stress. J Neurol Sci. 2017;381:213–219.
  • Alfieri DF, Lehmann MF, Oliveira SR, et al. Vitamin D deficiency is associated with acute ischemic stroke, C-reactive protein, and short-term outcome. Metab Brain Dis. 2017;32(2):493–502.
  • Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007;61(4):288–299.
  • Nørgaard M, Nielsen RB, Jacobsen JB, et al. Use of penicillin and other antibiotics and risk of multiple sclerosis: a population-based case-control study. Am J Epidemiol. 2011;174(8):945–948.
  • Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999;340(2):115–126.
  • Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. N Engl J Med. 2000;343(13):938–952.
  • Serafini B, Rosicarelli B, Veroni C, et al. Epstein-Barr virus-specific CD8 T cells selectively infiltrate the brain in multiple sclerosis and interact locally with virus-infected cells: clue for a virus-driven immunopathological mechanism. J Virol. 2019;93(24):e00980–19.
  • Yarlagadda K, Ma N, Doré S. Vitamin D and stroke: effects on incidence, severity, and outcome and the potential benefits of supplementation. Front Neurol. 2020;11:384.
  • Ghaderi S, Berg-Hansen P, Bakken IJ, et al. Hospitalization following influenza infection and pandemic vaccination in multiple sclerosis patients: a nationwide population-based registry study from Norway. Eur J Epidemiol. 2020;35(4):355–362.
  • Goodin DS, Corwin M, Kaufman D, et al. Causes of death among commercially insured multiple sclerosis patients in the United States. PLoS One. 2014;9(8):e105207.
  • Kingwell E, van der Kop M, Zhao Y, et al. Relative mortality and survival in multiple sclerosis: findings from British Columbia, Canada. J Neurol Neurosurg Psychiatry. 2012;83(1):61–66.
  • Harandi AA, Harandi AA, Pakdaman H, et al. Vitamin D and multiple sclerosis. Iran J Neurol. 2014;13(1):1–6.
  • Kienreich K, Tomaschitz A, Verheyen N, et al. Vitamin D and cardiovascular disease. Nutrients. 2013;5(8):3005–3021.
  • Schneider AL, Lutsey PL, Selvin E, et al. Vitamin D, vitamin D binding protein gene polymorphisms, race and risk of incident stroke: the atherosclerosis risk in communities (ARIC) study. Eur J Neurol. 2015;22(8):1220–1227.
  • Chowdhury R, Stevens S, Ward H, et al. Circulating vitamin D, calcium and risk of cerebrovascular disease: a systematic review and Meta-analysis. Eur J Epidemiol. 2012;27(8):581–591.
  • Miclea A, Bagnoud M, Chan A, et al. A brief review of the effects of vitamin D on multiple sclerosis. Front Immunol. 2020;11:781. (
  • D’Angelo C, Franch O, Fernández-Paredes L, et al. Antiphospholipid antibodies overlapping in isolated neurological syndrome and multiple sclerosis: Neurobiological insights and diagnostic challenges. Front Cell Neurosci. 2019;13:107. (
  • Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295–306.
  • Martins FF, Campos TML. Evaluation of frequency, clinical correlation, and antibodies confirmation profile in patients with suspected antiphospholipid syndrome. TH Open. 2021;5(4):e470–e478.
  • Velásquez M, Rojas M, Abrahams VM, et al. Mechanisms of endothelial dysfunction in antiphospholipid syndrome: Association with clinical manifestations. Front Physiol. 2018;9:1840–1840.
  • Ruiz-Irastorza G, Crowther M, Branch W, et al. Antiphospholipid syndrome. Lancet. 2010;376(9751):1498–1509.
  • Muscal E, Brey RL. Neurological manifestations of the antiphospholipid syndrome: risk assessments and evidence-based medicine. Int J Clin Pract. 2007;61(9):1561–1568.
  • Arboix A, Jiménez C, Massons J, et al. Hematological disorders: a commonly unrecognized cause of acute stroke. Expert Rev Hematol. 2016;9(9):891–901.
  • Fernández-Fernández FJ, Rivera-Gallego A, de la Fuente-Aguado J, et al. Antiphospholipid syndrome mimicking multiple sclerosis in two patients. Eur J Intern Med. 2006;17(7):500–502.
  • Fleetwood T, Cantello R, Comi C. Antiphospholipid syndrome and the neurologist: from pathogenesis to therapy. Front Neurol. 2018;9:1001.
  • Ahbeddou N, Ait Ben Haddou E, Hammi S, et al. [Multiple sclerosis associated with antiphospholipid syndrome: diagnostic and therapeutic difficulties]. Rev Neurol (Paris). 2012;168(1):65–69.
  • Cuadrado MJ, Khamashta MA, Ballesteros A, et al. Can neurologic manifestations of hughes (antiphospholipid) syndrome be distinguished from multiple sclerosis? Analysis of 27 patients and review of the literature. Medicine. 2000;79(1):57–68.
  • Ferreira S, D’Cruz DP, Hughes GR. Multiple sclerosis, neuropsychiatric lupus and antiphospholipid syndrome: where do we stand? Rheumatology (Oxford). 2005;44(4):434–442.
  • Miesbach W. Neurologic symptoms as a feature of the antiphospholipid syndrome. Semin Thromb Hemost. 2008;34(3):286–289.
  • Stosic M, Ambrus J, Garg N, et al. MRI characteristics of patients with antiphospholipid syndrome and multiple sclerosis. J Neurol. 2010;257(1):63–71.
  • Shoenfeld Y, Twig G, Katz U, et al. Autoantibody explosion in antiphospholipid syndrome. J Autoimmun. 2008;30(1-2):74–83.
  • Devreese KMJ. How to interpret antiphospholipid laboratory tests. Curr Rheumatol Rep. 2020;22(8):38.
  • Karussis D, Leker RR, Ashkenazi A, et al. A subgroup of multiple sclerosis patients with anticardiolipin antibodies and unusual clinical manifestations: do they represent a new nosological entity? Ann Neurol. 1998;44(4):629–634.
  • Bidot CJ, Horstman LL, Jy W, et al. Clinical and neuroimaging correlates of antiphospholipid antibodies in multiple sclerosis: a preliminary study. BMC Neurol. 2007;7(1):36–36.
  • Heinzlef O, Weill B, Johanet C, et al. Anticardiolipin antibodies in patients with multiple sclerosis do not represent a subgroup of patients according to clinical, familial, and biological characteristics. J Neurol Neurosurg Psychiatry. 2002;72(5):647–649.
  • Filippidou N, Krashias G, Pericleous C, et al. The association between IgG and IgM antibodies against cardiolipin, β2-glycoprotein I and domain I of β2-glycoprotein I with disease profile in patients with multiple sclerosis. Mol Immunol. 2016;75:161–167.
  • Garg N, Zivadinov R, Ramanathan M, et al. Clinical and MRI correlates of autoreactive antibodies in multiple sclerosis patients. J Neuroimmunol. 2007;187(1-2):159–165.
  • Grönwall C, Vas J, Silverman G. Protective roles of natural IgM antibodies. Front Immunol. 2012;3(66):66.
  • Koudriavtseva T, D’Agosto G, Mandoj C, et al. High frequency of antiphospholipid antibodies in relapse of multiple sclerosis: a possible indicator of inflammatory-thrombotic processes. Neurol Sci. 2014;35(11):1737–1741.
  • Liedorp M, Sanchez E, van Hoogstraten IMW, et al. No evidence of misdiagnosis in patients with multiple sclerosis and repeated positive anticardiolipin antibody testing based on magnetic resonance imaging and long term follow-up. J Neurol Neurosurg Psychiatry. 2007;78(10):1146–1148.
  • Mandoj C, Renna R, Plantone D, et al. Anti-annexin antibodies, cholesterol levels and disability in multiple sclerosis. Neurosci Lett. 2015;606:156–160.
  • Merashli M, Alves JD, Gentile F, et al. Relevance of antiphospholipid antibodies in multiple sclerosis: a systematic review and Meta analysis. Semin Arthritis Rheum. 2017;46(6):810–818.
  • Urbanus RT, Siegerink B, Roest M, et al. Antiphospholipid antibodies and risk of myocardial infarction and ischaemic stroke in young women in the RATIO study: a case-control study. Lancet Neurol. 2009;8(11):998–1005.
  • de Groot PG, Lutters B, Derksen RH, et al. Lupus anticoagulants and the risk of a first episode of deep venous thrombosis. J Thromb Haemost. 2005;3(9):1993–1997.
  • Uthman I, Noureldine MHA, Berjawi A, et al. Hughes syndrome and multiple sclerosis. Lupus. 2015;24(2):115–121.
  • Shor DB, Weiss GA, Barzilai O, et al. Prevalence of classic and Non-Classic antiphospholipid antibodies in multiple sclerosis. Isr Med Assoc J. 2015;17(9):559–562.
  • Szmyrka-Kaczmarek M, Pokryszko-Dragan A, Pawlik B, et al. Antinuclear and antiphospholipid antibodies in patients with multiple sclerosis. Lupus. 2012;21(4):412–420.
  • Baraczka K, Lakos G, Sipka S. Immunoserological changes in the cerebro-spinal fluid and serum in systemic lupus erythematosus patients with demyelinating syndrome and multiple sclerosis. Acta Neurol Scand. 2002;105(5):378–383.
  • Carrillo-Mora P, González-Villalva A. Clinical characteristics and presence of antiphospholipid antibodies (anticardiolipin-beta2GP-1) cerebrospinal fluid and serum of in a series of patients with multiple sclerosis in Mexico. ]Neurologia. 2010;25(2):71–77. [
  • Rombos A, Evangelopoulou-Katsiri E, Leventakou A, et al. Serum IgG and IgM anticardiolipin antibodies in neurological diseases. Acta Neurol Scand. 1990;81(3):243–245.
  • Zivadinov R, Ramanathan M, Ambrus J, et al. Anti-phospholipid antibodies are associated with response to interferon-beta1a treatment in MS: results from a 3-year longitudinal study. Neurol Res. 2012;34(8):761–769.
  • Merashli M, Noureldine MH, Uthman I, et al. Antiphospholipid syndrome: an update. Eur J Clin Invest. 2015;45(6):653–662.
  • Pierangeli SS, Chen PP, González EB. Antiphospholipid antibodies and the antiphospholipid syndrome: an update on treatment and pathogenic mechanisms. Curr Opin Hematol. 2006;13(5):366–375.
  • Shojaie M, Sotoodah A, Roozmeh S, et al. Annexin V and anti-Annexin V antibodies: two interesting aspects in acute myocardial infarction. Thromb J. 2009;7(1):13.
  • Colamatteo A, Maggioli E, Azevedo Loiola R, et al. Reduced annexin A1 expression associates with disease severity and inflammation in multiple sclerosis patients. J Immunol. 2019;203(7):1753–1765.
  • Tavazzi B, Batocchi AP, Amorini AM, et al. Serum metabolic profile in multiple sclerosis patients. Mult Scler Int. 2011;2011:167156.
  • Ferreira KPZ, Oliveira SR, Kallaur AP, et al. Disease progression and oxidative stress are associated with higher serum ferritin levels in patients with multiple sclerosis. J Neurol Sci. 2017;373:236–241.
  • Oliveira SR, Kallaur AP, Lopes J, et al. Insulin resistance, atherogenicity, and iron metabolism in multiple sclerosis with and without depression: Associations with inflammatory and oxidative stress biomarkers and uric acid. Psychiatry Res. 2017;250:113–120.
  • van der DL, Grobbee DE, Roest M, et al. Serum ferritin is a risk factor for stroke in postmenopausal women. Stroke. 2005;36(8):1637–1641.
  • LeVine SM, Lynch SG, Ou CN, et al. Ferritin, transferrin and iron concentrations in the cerebrospinal fluid of multiple sclerosis patients. Brain Res. 1999;821(2):511–515.
  • Petzold A, Eikelenboom MJ, Gveric D, et al. Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain. 2002;125(7):1462–1473.
  • Sfagos C, Makis AC, Chaidos A, et al. Serum ferritin, transferrin and soluble transferrin receptor levels in multiple sclerosis patients. Mult Scler. 2005;11(3):272–275.
  • Worthington V, Killestein J, Eikelenboom MJ, et al. Normal CSF ferritin levels in MS suggest against etiologic role of chronic venous insufficiency. Neurology. 2010;75(18):1617–1622.
  • Adamczyk B, Adamczyk-Sowa M. New insights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis. Oxid Med Cell Longev. 2016;2016:1973834.
  • Knyszyńska A, Radecka A, Zabielska P, et al. The role of iron metabolism in fatigue, depression, and quality of life in multiple sclerosis patients. Int J Environ Res Public Health. 2020;17(18):6818.
  • Wang Q, Wen X, Kong J. Recent progress on uric acid detection: a review. Crit Rev Anal Chem. 2020;50(4):359–375.
  • Peng F, Zhang B, Zhong X, et al. Serum uric acid levels of patients with multiple sclerosis and other neurological diseases. Mult Scler. 2008;14(2):188–196.
  • Zhong C, Zhong X, Xu T, et al. Sex-Specific relationship between serum uric acid and risk of stroke: a Dose-Response Meta-Analysis of prospective studies. J Am Heart Assoc. 2017;6(4):e005042.
  • Wang Y-F, Li J-X, Sun X-S, et al. High serum uric acid levels are a protective factor against unfavourable neurological functional outcome in patients with ischaemic stroke. J Int Med Res. 2018;46(5):1826–1838.
  • Tariq MA, Shamim SA, Rana KF, et al. Serum uric Acid - Risk factor for acute ischemic stroke and poor outcomes. Cureus. 2019;11(10):e6007.
  • Toncev G, Milicic B, Toncev S, et al. Serum uric acid levels in multiple sclerosis patients correlate with activity of disease and blood-brain barrier dysfunction. Eur J Neurol. 2002;9(3):221–226.
  • Toncev G, Vesic K, Aleksic D, et al. Higher serum uric acid levels in multiple sclerosis patients after longterm interferon beta treatment. Serb J Experim Clin Res. 2017;18(3):227–230.
  • Guerrero AL, Gutiérrez F, Iglesias F, et al. Serum uric acid levels in multiple sclerosis patients inversely correlate with disability. Neurol Sci. 2011;32(2):347–350.
  • Rentzos M, Nikolaou C, Anagnostouli M, et al. Serum uric acid and multiple sclerosis. Clin Neurol Neurosurg. 2006;108(6):527–531.
  • Zoccolella S, Tortorella C, Iaffaldano P, et al. Low serum urate levels are associated to female gender in multiple sclerosis patients. PLoS One. 2012;7(7):e40608-e40608.
  • Massa J, O’Reilly E, Munger KL, et al. Serum uric acid and risk of multiple sclerosis. J Neurol. 2009;256(10):1643–1648.
  • Koch M, De Keyser J. Uric acid in multiple sclerosis. Neurol Res. 2006;28(3):316–319.
  • Liu B, Shen Y, Xiao K, et al. Serum uric acid levels in patients with multiple sclerosis: a meta-analysis. Neurol Res. 2012;34(2):163–171.
  • Pakpoor J, Seminog OO, Ramagopalan SV, et al. Clinical associations between gout and multiple sclerosis, parkinson’s disease and motor neuron disease: record-linkage studies. BMC Neurol. 2015;15:16.
  • Moccia M, Lanzillo R, Palladino R, et al. Uric acid: a potential biomarker of multiple sclerosis and of its disability. Clin Chem Lab Med (CCLM). 2015;53(5):753–759.
  • Markowitz CE, Spitsin S, Zimmerman V, et al. The treatment of multiple sclerosis with inosine. J Altern Complement Med. 2009;15(6):619–625.
  • Gonsette RE, Sindic C, D’Hooghe MB, et al. Boosting endogenous neuroprotection in multiple sclerosis: the ASsociation of inosine and interferon β in relapsing- remitting multiple sclerosis (ASIIMS) trial. Mult Scler. 2010;16(4):455–462.
  • Spitsin S, Markowitz CE, Zimmerman V, et al. Modulation of serum uric acid levels by inosine in patients with multiple sclerosis does not affect blood pressure. J Hum Hypertens. 2010;24(5):359–362.
  • Gauthier GM, Keevil JG, McBride PE. The association of homocysteine and coronary artery disease. Clin Cardiol. 2003;26(12):563–568.
  • Ansari R, Mahta A, Mallack E, et al. Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol. 2014;10(4):281–288.
  • Ho PI, Ortiz D, Rogers E, et al. Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J Neurosci Res. 2002;70(5):694–702.
  • Teunissen CE, Killestein J, Kragt JJ, et al. Serum homocysteine levels in relation to clinical progression in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2008;79(12):1349–1353.
  • Kararizou E, Paraskevas G, Triantafyllou N, et al. Plasma homocysteine levels in patients with multiple sclerosis in the greek population. J Chin Med Assoc. 2013;76(11):611–614.
  • Triantafyllou N, Evangelopoulos M-E, Kimiskidis VK, et al. Increased plasma homocysteine levels in patients with multiple sclerosis and depression. Ann Gen Psychiatry. 2008;7(1):17–17.
  • Goodkin DE, Jacobsen DW, Galvez N, et al. Serum cobalamin deficiency is uncommon in multiple sclerosis. Arch Neurol. 1994;51(11):1110–1114.
  • Vrethem M, Mattsson E, Hebelka H, et al. Increased plasma homocysteine levels without signs of vitamin B12 deficiency in patients with multiple sclerosis assessed by blood and cerebrospinal fluid homocysteine and methylmalonic acid. Mult Scler. 2003;9(3):239–245.
  • Ramsaransing GS, Fokkema MR, Teelken A, et al. Plasma homocysteine levels in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2006;77(2):189–192.
  • Río J, Montalban J, Tintoré M, et al. Serum homocysteine levels in multiple sclerosis. Arch Neurol. 1994;51(12):1181.
  • Bala MM, Celinska-Lowenhoff M, Szot W, et al. Antiplatelet and anticoagulant agents for secondary prevention of stroke and other thromboembolic events in people with antiphospholipid syndrome. Cochrane Database Syst Rev. 2020;10:CD012169.
  • Dardiotis E, Arseniou S, Sokratous M, et al. Vitamin B12, folate, and homocysteine levels and multiple sclerosis: a Meta-analysis. Mult Scler Relat Disord. 2017;17:190–197.
  • Zhu Y, He ZY, Liu HN. Meta-analysis of the relationship between homocysteine, vitamin B12, folate, and multiple sclerosis. J Clin Neurosci. 2011;18(7):933–938.
  • Kocer B, Engur S, Ak F, et al. Serum vitamin B12, folate, and homocysteine levels and their association with clinical and electrophysiological parameters in multiple sclerosis. J Clin Neurosci. 2009;16(3):399–403.
  • Dubchenko E, Ivanov A, Spirina N, et al. Hyperhomocysteinemia and endothelial dysfunction in multiple sclerosis. Brain Sci. 2020;10(9):637.
  • Aksungar FB, Topkaya AE, Yildiz Z, et al. Coagulation status and biochemical and inflammatory markers in multiple sclerosis. J Clin Neurosci. 2008;15(4):393–397.
  • Oliveira SR, Flauzino T, Sabino BS, et al. Elevated plasma homocysteine levels are associated with disability progression in patients with multiple sclerosis. Metab Brain Dis. 2018;33(5):1393–1399.
  • D’Haeseleer M, Beelen R, Fierens Y, et al. Cerebral hypoperfusion in multiple sclerosis is reversible and mediated by endothelin-1. Proc Natl Acad Sci U S A. 2013;110(14):5654–5658.
  • Hostenbach S, Raeymaekers H, Van Schuerbeek P, et al. The role of cerebral hypoperfusion in multiple sclerosis (ROCHIMS) trial in multiple sclerosis: Insights from negative Results. Front Neurol. 2020;11:674.
  • Ziv I, Fleminger G, Djaldetti R, et al. Increased plasma endothelin-1 in acute ischemic stroke. Stroke. 1992;23(7):1014–1016.
  • Abdel Naseer M, Rabah AM, Rashed LA, et al. Glutamate and nitric oxide as biomarkers for disease activity in patients with multiple sclerosis. Mult Scler Relat Disord. 2020;38:101873.
  • Ibragic S, Sofic E, Suljic E, et al. Serum nitric oxide concentrations in patients with multiple sclerosis and patients with epilepsy. J Neural Transm (Vienna). 2012;119(1):7–11.
  • Rodríguez-Sáinz Mdel C, Sánchez-Ramón S, de Andrés C, et al. Th1/Th2 cytokine balance and nitric oxide in cerebrospinal fluid and serum from patients with multiple sclerosis. Eur Cytokine Netw. 2002;13(1):110–114.
  • Smith K, Lassmann H. The role of nitric oxide in multiple sclerosis. Lancet Neurol. 2002;1(4):232–241.
  • Subedi L, Gaire BP, Parveen A, et al. Nitric oxide as a target for phytochemicals in anti-Neuroinflammatory prevention therapy. Int J Mol Sci. 2021;22(9):4771.
  • Hallwirth F. Serum nitric oxide is increased in untreated multiple sclerosis patients. 27 Oct 2017. ECTRIMS Online Library; 200778;Poster 1123.
  • Castillo J, Rama R, Dávalos A. Nitric oxide–related brain damage in acute ischemic stroke. Stroke. 2000;31(4):852–857.
  • Al Gawwam G, Sharquie IK. Serum glutamate is a predictor for the diagnosis of multiple sclerosis. SciWorldJ. 2017;2017:9320802.
  • Lan M, Tang X, Zhang J, et al. Insights in pathogenesis of multiple sclerosis: nitric oxide may induce mitochondrial dysfunction of oligodendrocytes. Rev Neurosci. 2018;29(1):39–53.
  • Chen ZQ, Mou RT, Feng DX, et al. The role of nitric oxide in stroke. Med Gas Res. 2017;7(3):194–203.
  • Steensig K, Olesen Kevin KW, Thim T, et al. CAD is an independent risk factor for stroke among patients with Atrial Fibrillation. J Am Coll Cardiol. 2018;72(20):2540–2542.
  • De Raedt S, De Vos A, De Keyser J. Autonomic dysfunction in acute ischemic stroke: an underexplored therapeutic area? J Neurol Sci. 2015;348(1-2):24–34.
  • Jimenez-Ruiz A, Racosta JM, Kimpinski K, et al. Cardiovascular autonomic dysfunction after stroke. Neurol Sci. 2021;42(5):1751–1758.
  • Brook RD, Julius S. Autonomic imbalance, hypertension, and cardiovascular risk. Am J Hypertens. 2000;13(6 Pt 2):112s–1122. s.
  • Sternberg Z. Impaired neurovisceral integration of cardiovascular modulation contributes to multiple sclerosis morbidities. Mol Neurobiol. 2017;54(1):362–374.
  • Flachenecker P, Reiners K, Krauser M, et al. Autonomic dysfunction in multiple sclerosis is related to disease activity and progression of disability. Mult Scler. 2001;7(5):327–334.
  • Nasseri K, Uitdehaag BMJ, van Walderveen MAA, et al. Cardiovascular autonomic function in patients with relapsing remitting multiple sclerosis: a new surrogate marker of disease evolution? Eur J Neurol. 1999;6(1):29–33.
  • Racosta JM, Kimpinski K. Autonomic dysfunction, immune regulation, and multiple sclerosis. Clin Auton Res. 2016;26(1):23–31.
  • Shirbani F, Barin E, Lee YC, et al. Characterisation of cardiac autonomic function in multiple sclerosis based on spontaneous changes of heart rate and blood pressure. Mult Scler Relat Disord. 2018;22:120–127.
  • Findling O, Hauer L, Pezawas T, et al. Cardiac autonomic dysfunction in multiple sclerosis: a systematic review of current knowledge and impact of immunotherapies. J Clin Med. 2020;9(2):335.
  • Pascolo L, Gianoncelli A, Rizzardi C, et al. Calcium micro-depositions in jugular truncular venous malformations revealed by synchrotron-based XRF imaging. Sci Rep. 2014;4:6540.
  • Zamboni P, Tisato V, Menegatti E, et al. Ultrastructure of internal jugular vein defective valves. Phlebology. 2015;30(9):644–647.
  • Coen M, Menegatti E, Salvi F, et al. Altered collagen expression in jugular veins in multiple sclerosis. Cardiovasc Pathol. 2013;22(1):33–38.
  • Racosta JM, Sposato LA, Morrow SA, et al. Cardiovascular autonomic dysfunction in multiple sclerosis: a meta-analysis. Mult Scler Relat Disord. 2015;4(2):104–111.
  • Simula S, Laitinen T, Laitinen TM, et al. Effect of fingolimod on cardiac autonomic regulation in patients with multiple sclerosis. Mult Scler. 2016;22(8):1080–1085.
  • Simula S, Laitinen TP, Laitinen TM, et al. Heart rate variability predicts the magnitude of heart rate decrease after fingolimod initiation. Mult Scler Relat Disord. 2016;10:86–89.
  • Calabresi PA, Radue EW, Goodin D, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(6):545–556.
  • Kappos L, Antel J, Comi G, et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med. 2006;355(11):1124–1140.
  • Kappos L, Radue EW, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401.
  • Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402–415.
  • Kappos L, O’Connor P, Radue EW, et al. Long-term effects of fingolimod in multiple sclerosis: the randomized FREEDOMS extension trial. Neurology. 2015;84(15):1582–1591.
  • Kappos L, Cohen J, Collins W, et al. Fingolimod in relapsing multiple sclerosis: an integrated analysis of safety findings. Mult Scler Relat Disord. 2014;3(4):494–504.
  • DiMarco JP, O’Connor P, Cohen JA, et al. First-dose effects of fingolimod: Pooled safety data from three phase 3 studies. Mult Scler Relat Disord. 2014;3(5):629–638.
  • Gold R, Comi G, Palace J, FIRST Study Investigators, et al. Assessment of cardiac safety during fingolimod treatment initiation in a real-world relapsing multiple sclerosis population: a phase 3b, open-label study. J Neurol. 2014;261(2):267–276.
  • Laroni A, Brogi D, Morra VB, EAP Investigators, et al. Safety of the first dose of fingolimod for multiple sclerosis: results of an open-label clinical trial. BMC Neurol. 2014;14:65.
  • Limmroth V, Ziemssen T, Lang M, et al. Electrocardiographic assessments and cardiac events after fingolimod first dose - a comprehensive monitoring study. BMC Neurol. 2017;17(1):11.
  • Ontaneda D, Hara-Cleaver C, Rudick RA, et al. Early tolerability and safety of fingolimod in clinical practice. J Neurol Sci. 2012;323(1-2):167–172.
  • Fragoso YD, Arruda CC, Arruda WO, et al. The real-life experience with cardiovascular complications in the first dose of fingolimod for multiple sclerosis. Arq Neuropsiquiatr. 2014;72(9):712–714.
  • Paolicelli D, Manni A, Direnzo V, et al. Long-term cardiac safety and tolerability of fingolimod in multiple sclerosis: a postmarketing study. J Clin Pharmacol. 2015;55(10):1131–1136.
  • Castillo-Trivino T, Lopetegui I, Alarcón-Duque JA, et al. Ventricular tachycardia on chronic fingolimod treatment for multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86(8):931–932.
  • Kocyigit D, Yalcin MU, Gurses KM, et al. Are there any clinical and electrocardiographic predictors of heart rate reduction in relapsing- remitting multiple sclerosis patients treated with fingolimod? Mult Scler Relat Disord. 2019;27:276–280.
  • Rosini JM, Rajasimhan S, Fellows SE, et al. Delayed cardiac dysrhythmias after fingolimod administration. Am J Emerg Med. 2015;33(7):987.e1–987.e3.
  • Espinosa PS, Berger JR. Delayed fingolimod-associated asystole. Mult Scler. 2011;17(11):1387–1389.
  • Lindsey JW, Haden-Pinneri K, Memon NB, et al. Sudden unexpected death on fingolimod. Mult Scler. 2012;18(10):1507–1508.
  • Mori M. Lethal arrhythmia due to fingolimod, a S1P receptor modulator: are we overestimating or underestimating? J Neurol Neurosurg Psychiatry. 2015;86(8):823.
  • Racca V, Rovaris M, Cavarretta R, et al. Acute fingolimod effects on baroreflex and cardiovascular autonomic control in multiple Sclerosis. J Cent Nerv Syst Dis. 2019;11:1179573519849945.
  • Hilz MJ, Wang R, de Rojas Leal C, et al. Fingolimod initiation in multiple sclerosis patients is associated with potential beneficial cardiovascular autonomic effects. Ther Adv Neurol Disord. 2017;10(4):191–209.
  • Olindo S, Guillon B, Helias J, et al. Decrease in heart ventricular ejection fraction during multiple sclerosis. Eur J Neurol. 2002;9(3):287–291.
  • Yagi Y, Nakamura Y, Kitahara K, et al. Analysis of onset mechanisms of a sphingosine 1-Phosphate receptor modulator Fingolimod-Induced atrioventricular conduction block and QT-Interval prolongation. Toxicol Appl Pharmacol. 2014;281(1):39–47.
  • Camm J, Hla T, Bakshi R, et al. Cardiac and vascular effects of fingolimod: mechanistic basis and clinical implications. Am Heart J. 2014;168(5):632–644.
  • Limmroth V, Ziemssen T, Kleiter I, et al. A comprehensive monitoring study on electrocardiographic assessments and cardiac events after fingolimod first Dose-Possible predictors of cardiac outcomes. Front Neurol. 2020;11:818.
  • Vanoli E, Montano N, De Angelis G, et al. Cardiovascular autonomic individual profile of relapsing-remitting multiple sclerosis patients and risk of extending cardiac monitoring after first dose fingolimod. J Neurol Sci. 2019;405:116423.
  • Tsai HC, Han MH. Sphingosine-1-Phosphate (S1P) and S1P signaling pathway: Therapeutic targets in autoimmunity and inflammation. Drugs. 2016;76(11):1067–1079.
  • Spielman LJ, Gibson DL, Klegeris A. Unhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int. 2018;120:149–163.
  • Yamashiro K, Kurita N, Urabe T, et al. Role of the gut microbiota in stroke pathogenesis and potential therapeutic implications. Ann Nutr Metab. 2021;77(Suppl. 2):36–39.)
  • Tyler Patterson T, Grandhi R. Gut microbiota and neurologic diseases and injuries. Adv Exp Med Biol. 2020;1238:73–91.
  • Marrie RA, Cohen J, Stuve O, et al. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Mult Scler. 2015;21(3):263–281.
  • Kasper L, Chitnis T, Avila M, et al. Exploring the role of the microbiome in multiple sclerosis. US Neurology. 2019;15(2):82.
  • Dreikorn M, Milacic Z, Pavlovic V, et al. Immunotherapy of experimental and human stroke with agents approved for multiple sclerosis: a systematic review. Ther Adv Neurol Disord. 2018;11:1756286418770626.
  • Rae-Grant A, Day GS, Marrie RA, et al. Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis: Report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology. 2018;90(17):777–788.
  • Ghezzi A. European and American guidelines for multiple sclerosis treatment. Neurol Ther. 2018;7(2):189–194.
  • McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review. JAMA. 2021;325(8):765–779.
  • Graf J, Aktas O, Rejdak K, et al. Monoclonal antibodies for multiple sclerosis: an update. BioDrugs. 2019;33(1):61–78.
  • Wingerchuk DM, Weinshenker BG. Disease modifying therapies for relapsing multiple sclerosis. BMJ. 2016;354:i3518.
  • Hillert J, Magyari M, Soelberg Sørensen P, et al. Treatment switching and discontinuation over 20 years in the big multiple sclerosis data network. Front Neurol. 2021;12(295):647811.
  • Sternberg Z, Leung C, Sternberg D, et al. Disease modifying therapies modulate cardiovascular risk factors in patients with multiple sclerosis. Cardiovasc Ther. 2014;32(2):33–39.
  • Morra VB, Coppola G, Orefice G, et al. Interferon-beta treatment decreases cholesterol plasma levels in multiple sclerosis patients. Neurology. 2004;62(5):829–830.
  • Wijnands JMA, Zhu F, Kingwell E, et al. Disease-modifying drugs for multiple sclerosis and infection risk: a cohort study. J Neurol Neurosurg Psychiatry. 2018;89(10):1050–1056.
  • Yong KP, Kim HJ. Disease modifying therapies and infection risks in multiple sclerosis-a decision-making conundrum. Ann Transl Med. 2020;8(11):722.
  • Uher T, Fellows K, Horakova D, et al. Serum lipid profile changes predict neurodegeneration in interferon-β1a-treated multiple sclerosis patients. J Lipid Res. 2017;58(2):403–411.
  • de Jong HJI, Kingwell E, Shirani A, British Columbia Multiple Sclerosis Clinic Neurologists, et al. Evaluating the safety of β-interferons in MS: a series of nested case-control studies. Neurology. 2017;88(24):2310–2320.
  • Blumenfeld Kan S, Staun-Ram E, Golan D, et al. HDL-cholesterol elevation associated with fingolimod and dimethyl fumarate therapies in multiple sclerosis. Mult Scler J Exp Transl Clin. 2019;5(4):2055217319882720.
  • Förster M, Küry P, Aktas O, et al. Managing risks with immune therapies in multiple sclerosis. Drug Saf. 2019;42(5):633–647.
  • Baharnoori M, Gonzalez CT, Chua A, et al. Predictors of hematological abnormalities in multiple sclerosis patients treated with fingolimod and dimethyl fumarate and impact of treatment switch on lymphocyte and leukocyte count. Mult Scler Relat Disord. 2018;20:51–57.
  • Azevedo CJ, Kutz C, Dix A, et al. Intracerebral haemorrhage during alemtuzumab administration. Lancet Neurol. 2019;18(4):329–331.
  • Alnahdi MA, Aljarba SI, Al Malik YM. Alemtuzumab-induced simultaneous onset of autoimmune haemolytic anaemia, alveolar haemorrhage, nephropathy, and stroke: a case report. Mult Scler Relat Disord. 2020;41:102141.
  • FDA. FDA warns about rare but serious risks of stroke and blood vessel wall tears with multiple sclerosis drug Lemtrada (alemtuzumab). 2018. [cited 2021 07 July].
  • Ravnborg M, Sørensen PS, Andersson M, et al. Methylprednisolone in combination with interferon beta-1a for relapsing-remitting multiple sclerosis (MECOMBIN study): a multicentre, double-blind, randomised, placebo-controlled, parallel-group trial. Lancet Neurol. 2010;9(7):672–680.
  • Sorensen PS, Mellgren SI, Svenningsson A, et al. NORdic trial of oral methylprednisolone as add-on therapy to interferon beta-1a for treatment of relapsing-remitting multiple sclerosis (NORMIMS study): a randomised, placebo-controlled trial. Lancet Neurol. 2009;8(6):519–529.
  • Sabidó M, Venkatesh S, Hayward B, et al. Subcutaneous interferon-β1a does not increase the risk of stroke in patients with multiple sclerosis: Analysis of pooled clinical trials and Post-Marketing surveillance. Adv Ther. 2018;35(11):2041–2053.
  • Dimopoulou D, Dimosiari A, Mandala E, et al. Autoimmune thrombotic thrombocytopenic purpura: Two rare cases associated with juvenile idiopathic arthritis and multiple sclerosis. Front Med (Lausanne). 2017;4:89.
  • Baghbanian SM, Moghadasi AN. Thrombotic microangiopathy associated with interferon-beta treatment in patients with multiple sclerosis. Iran J Neurol. 2018;17(2):89–90.
  • Nishio H, Tsukamoto T, Matsubara T, et al. Thrombotic microangiopathy caused by interferon β-1b for multiple sclerosis: a case report. CEN Case Rep. 2016;5(2):179–183.
  • Gerischer LM, Siebert E, Janke O, et al. Favorable outcome of interferon-beta associated thrombotic microangiopathy following treatment with corticosteroids, plasma exchange and rituximab: a case report. Mult Scler Relat Disord. 2016;10:63–65.
  • Ben-Amor AF, Trochanov A, Fischer TZ. Cumulative review of thrombotic microangiopathy, thrombotic thrombocytopenic purpura, and hemolytic uremic syndrome reports with subcutaneous interferon β-1a. Adv Ther. 2015;32(5):445–454.
  • Arrambide G. Thrombotic thrombocytopenic purpura-haemolytic uremic syndrome in relapsing-remitting multiple sclerosis patients on high-dose interferon beta. Mult Scler. 2014;20(13):1788–1789.
  • Simbrich A, Thibaut J, Khil L, et al. Drug-use patterns and severe adverse events with disease-modifying drugs in patients with multiple sclerosis: a cohort study based on german claims data. Neuropsychiatr Dis Treat. 2019;15:1439–1457.
  • Dhib-Jalbut S, Marks S. Interferon-beta mechanisms of action in multiple sclerosis. Neurology. 2010;74 Suppl 1:S17–S24.
  • Watts RA. Musculoskeletal and systemic reactions to biological therapeutic agents. Curr Opin Rheumatol. 2000;12(1):49–52.
  • Fu Y, Zhang N, Ren L, et al. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc Natl Acad Sci U S A. 2014;111(51):18315–18320.
  • Kraft P, Göb E, Schuhmann MK, et al. FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke. 2013;44(11):3202–3210.
  • Zhu Z, Fu Y, Tian D, et al. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation. 2015;132(12):1104–1112.
  • Li YJ, Chang GQ, Liu Y, et al. Fingolimod alters inflammatory mediators and vascular permeability in intracerebral hemorrhage. Neurosci Bull. 2015;31(6):755–762.
  • Fu Y, Hao J, Zhang N, et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 2014;71(9):1092–1101.
  • Wang Z, Kawabori M, Houkin K. FTY720 (fingolimod) ameliorates brain injury through multiple mechanisms and is a strong candidate for stroke treatment. Curr Med Chem. 2020;27(18):2979–2993.
  • Cipriani R, Chara JC, Rodríguez-Antigüedad A, et al. FTY720 attenuates excitotoxicity and neuroinflammation. J Neuroinflammation. 2015;12:86.
  • Ayzenberg I, Hoepner R, Kleiter I. Fingolimod for multiple sclerosis and emerging indications: appropriate patient selection, safety precautions, and special considerations. Ther Clin Risk Manag. 2016;12:261–272.
  • Belliston S, Sundararajan J, Hammond N, et al. Reversible cerebral vasoconstriction syndrome in association with fingolimod use. Int J Neurosci. 2017;127(9):831–834.
  • Moccia M, Albero R, Lanzillo R, et al. Cardiovascular profile improvement during natalizumab treatment. Metab Brain Dis. 2018;33(3):981–986.
  • Elkins J, Veltkamp R, Montaner J, et al. Safety and efficacy of natalizumab in patients with acute ischaemic stroke (ACTION): a randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2017;16(3):217–226.
  • O’Connor P, Goodman A, Kappos L, et al. Long-term safety and effectiveness of natalizumab redosing and treatment in the STRATA MS study. Neurology. 2014;83(1):78–86.
  • Butzkueven H, Kappos L, Pellegrini F, on behalf of the TYSABRI Observational Program (TOP) Investigators, et al. Efficacy and safety of natalizumab in multiple sclerosis: interim observational programme results. J Neurol Neurosurg Psych. 2014;85(11):1190–1197.
  • van Pesch V, Sindic CJ, Fernández O. Effectiveness and safety of natalizumab in real-world clinical practice: Review of observational studies. Clin Neurol Neurosurg. 2016;149:55–63.
  • Gandhi S, Jakimovski D, Ahmed R, et al. Use of natalizumab in multiple sclerosis: current perspectives. Expert Opin Biol Ther. 2016;16(9):1151–1162.
  • Dahlhaus S, Hoepner R, Chan A, et al. Disease course and outcome of 15 monocentrically treated natalizumab-associated progressive multifocal leukoencephalopathy patients. J Neurol Neurosurg Psychiatry. 2013;84(10):1068–1074.
  • Tan IL, McArthur JC, Clifford DB, et al. Immune reconstitution inflammatory syndrome in natalizumab-associated PML. Neurology. 2011;77(11):1061–1067.
  • Hamidi V, Couto E, Ringerike T, et al. A multiple treatment comparison of eleven Disease-Modifying drugs used for multiple sclerosis. J Clin Med Res. 2018;10(2):88–105.
  • Pöllmann W, Feneberg W. Current management of pain associated with multiple sclerosis. CNS Drugs. 2008;22(4):291–324.
  • Schmidt M, Christiansen CF, Horváth-Puhó E, et al. Non-steroidal anti-inflammatory drug use and risk of venous thromboembolism. J Thromb Haemost. 2011;9(7):1326–1333.
  • van Zaane B, Nur E, Squizzato A, et al. Systematic review on the effect of glucocorticoid use on procoagulant, anti-coagulant and fibrinolytic factors. J Thromb Haemost. 2010;8(11):2483–2493.
  • Albucher JF, Vuillemin-Azaïs C, Manelfe C, et al. Cerebral thrombophlebitis in three patients with probable multiple sclerosis. Role of lumbar puncture or intravenous corticosteroid treatment. Cerebrovasc Dis. 1999;9(5):298–303.
  • Städler C, Vuadens P, Dewarrat A, et al. Cerebral venous thrombosis after lumbar puncture and intravenous steroids in two patients with multiple sclerosis. ]Rev Neurol (Paris). 2000;156(2):155–159. [
  • Malanga GA, Gangemi E. Intracranial venous thrombosis in a patient with multiple sclerosis. A case report and review of contraceptive alternatives in patients with disabilities. Am J Phys Med Rehabil. 1994;73(4):283–285.
  • Presicci A, Garofoli V, Simone M, et al. Cerebral venous thrombosis after lumbar puncture and intravenous high dose corticosteroids: a case report of a childhood multiple sclerosis. Brain Dev. 2013;35(6):602–605.
  • Al-Hashel JY, Ahmed SF, Alexnader KJ, et al. Cerebral venous thrombosis in a patient with clinically isolated spinal cord syndrome. Case Rep Neurol Med. 2013;2013:364869.
  • Vandenberghe N, Debouverie M, Anxionnat R, et al. Cerebral venous thrombosis in four patients with multiple sclerosis. Eur J Neurol. 2003;10(1):63–66.
  • Maurelli M, Bergamaschi R, Candeloro E, et al. Cerebral venous thrombosis and demyelinating diseases: report of a case in a clinically isolated syndrome suggestive of multiple sclerosis onset and review of the literature. Mult Scler. 2005;11(2):242–244.
  • Hellwig K, Chen LH, Stancyzk FZ, et al. Oral contraceptives and multiple sclerosis/clinically isolated syndrome susceptibility. PLoS ONE. 2016;11(3):e0149094.
  • Avasarala J, Parti N. Can aspirin minimize stroke risk and new lesion formation in multiple sclerosis? Front Neurol. 2018;9:613.
  • Tsau S, Emerson MR, Lynch SG, et al. Aspirin and multiple sclerosis. BMC Med. 2015;13(1):153.
  • Arachchillage D, Laffan M. What is the appropriate anticoagulation strategy for thrombotic antiphospholipid syndrome? Br J Haematol. 2020;189(2):216–227.
  • Erkan D, Harrison MJ, Levy R, et al. Aspirin for primary thrombosis prevention in the antiphospholipid syndrome: a randomized, double-blind, placebo-controlled trial in asymptomatic antiphospholipid antibody-positive individuals. Arthritis Rheum. 2007;56(7):2382–2391.
  • Kraus J, Oschmann P. The impact of interferon-beta treatment on the blood-brain barrier. Drug Discov Today. 2006;11(15-16):755–762.
  • Wanve M, Kaur H, Sarmah D, et al. Therapeutic spectrum of interferon-β in ischemic stroke. J Neurosci Res. 2019;97(2):116–127.
  • Kunze R, Urrutia A, Hoffmann A, et al. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity. Exp Neurol. 2015;266:99–111.
  • Nishihara H, Shimizu F, Sano Y, et al. Fingolimod prevents blood-brain barrier disruption induced by the sera from patients with multiple sclerosis. PLoS One. 2015;10(3):e0121488.
  • Nishihara H, Maeda T, Sano Y, et al. Fingolimod promotes blood-nerve barrier properties in vitro. Brain Behav. 2018;8(4):e00924.
  • Lühder F, Kebir H, Odoardi F, et al. Laquinimod enhances Central nervous system barrier functions. Neurobiol Dis. 2017;102:60–69.
  • Elkind MSV, Veltkamp R, Montaner J, et al. Natalizumab in acute ischemic stroke (ACTION II): A randomized, placebo-controlled trial). Neurology. 2020;95(8):e1091–e1104.
  • Aloizou AM, Siokas V, Pateraki G, et al. Thinking outside the ischemia box: Advancements in the use of multiple sclerosis drugs in ischemic stroke. J Clin Med. 2021;10(4):630.
  • Ifergan I, Wosik K, Cayrol R, et al. Statins reduce human blood-brain barrier permeability and restrict leukocyte migration: relevance to multiple sclerosis. Ann Neurol. 2006;60(1):45–55.
  • Pihl-Jensen G, Tsakiri A, Frederiksen JL. Statin treatment in multiple sclerosis: a systematic review and Meta-analysis. CNS Drugs. 2015;29(4):277–291.
  • Ciurleo R, Bramanti P, Marino S. Role of statins in the treatment of multiple sclerosis. Pharmacol Res. 2014;87:133–143.
  • Chataway J, Schuerer N, Alsanousi A, et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet. 2014;383(9936):2213–2221.
  • Hoepner R, Bagnoud M, Pistor M, et al. Vitamin D increases glucocorticoid efficacy via inhibition of mTORC1 in experimental models of multiple sclerosis. Acta Neuropathol. 2019;138(3):443–456.
  • Vokó Z, Hollander M, Hofman A, et al. Dietary antioxidants and the risk of ischemic stroke: the Rotterdam Study. Neurology. 2003;61(9):1273–1275.
  • Kocot J, Luchowska-Kocot D, Kiełczykowska M, et al. Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients. 2017;9(7):659.
  • Ramírez-Salazar SA, Herren C, McCartney J, et al. Dietary insights in neurological diseases. Curr Neurol Neurosci Rep. 2021;21(10):55.
  • Rai SN, Singh P, Steinbusch HWM, et al. The role of vitamins in neurodegenerative disease: an update. Biomedicines. 2021;9(10):1284.
  • Evans E, Piccio L, Cross AH. Use of vitamins and dietary supplements by patients with multiple sclerosis: a review. JAMA Neurol. 2018;75(8):1013–1021.
  • Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol. 2010;120(3):277–286.
  • Fisher K, Cuascut F, Rivera V, et al. Current advances in pediatric onset multiple sclerosis. Biomedicines. 2020;8(4):71.
  • Poellmann W, Starck M, Kuempfel T, et al. Changing course of multiple sclerosis (MS) after stroke: Excessive disease activity in a MS patient after cerebral infarction (P1.122). Neurology. 2015;84(14 Suppl.):P1.122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.