469
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Sirtuins, a key regulator of ageing and age-related neurodegenerative diseases

& ORCID Icon
Pages 1167-1192 | Received 03 Jun 2020, Accepted 15 Mar 2022, Published online: 13 May 2022

References

  • Anekonda TS, Reddy PH. Neuronal protection by sirtuins in Alzheimer’s disease. J Neurochem. 2006;96(2):305–313.
  • Donmez G, Guarente L. Aging and disease: connections to sirtuins. Aging Cell. 2010;9(2):285–290.
  • Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med. 2013;5(3):344–352.
  • Dong Y, Zou S. Sirtuins and aging. In Epigenetics of aging. New York, NY: Springer; 2010:51–75.
  • Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell. 2006;126(2):257–268.
  • Mahlknecht U, Voelter-Mahlknecht S. Chromosomal characterization and localization of the NAD+-dependent histone deacetylase gene sirtuin 1 in the mouse. Int J Mol Med. 2009;23(2):245–252.
  • Potente M, Ghaeni L, Baldessari D, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007;21(20):2644–2658.
  • Voelter-Mahlknecht S, Mahlknecht U. Cloning, chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin 1. Int J Mol Med. 2006;17(1):59–67.
  • Gao L, Cueto MA, Asselbergs F, et al. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002;277(28):25748–25755.
  • Li H, Wang R. Blocking SIRT1 inhibits cell proliferation and promotes aging through the PI3K/AKT pathway. Life Sci. 2017;190:84–90.
  • Li W, Zhang B,Tang J, et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin. J Neurosci. 2007;27(10):2606–2616.
  • Liu X, Wei W, Zhu W, et al. Histone deacetylase AtSRT1 links metabolic flux and stress response in Arabidopsis. Mol Plant. 2017;10(12):1510–1522.
  • Donmez G, Arun A, Chung C-Y, et al. SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. J Neurosci. 2012;32(1):124–132.
  • Horio Y, Hayashi T, Kuno A, et al. Cellular and molecular effects of sirtuins in health and disease. Clin Sci (Lond). 2011;121(5):191–203.
  • Lalla R, Donmez G. The role of sirtuins in Alzheimer’s disease. Front Aging Neurosci. 2013;5:16.
  • Szućko I. Sirtuins: not only animal proteins. Acta Physiologiae Plantarum. 2016;38(10):237.
  • Karagiannis TC, Ververis K. Potential of chromatin modifying compounds for the treatment of Alzheimer’s disease. Pathobiol Aging Age Relat Dis. 2012;2(1):14980.
  • Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404(1):1–13.
  • Vassilopoulos A, Fritz K, Petersen D, et al. The human sirtuin family: evolutionary divergences and functions. Hum Genomics. 2011;5(5):485–496.
  • Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. 1999;260(1):273–279.
  • Lombard D, Alt F, Cheng H-L, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007;27(24):8807–8814.
  • Wang H, Li J, Huang R, et al. SIRT4 and SIRT6 serve as novel prognostic biomarkers with competitive functions in serous ovarian cancer. Front Genet. 2021;2021:1208.
  • Jiao F, Gong Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid Med Cell Longevity. 2020;2020:6782872.
  • Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol. 2007;21(8):1745–1755.
  • Donmez G. The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci. 2012;33(9):494–501.
  • Shoba B, Lwin ZM, Ling LS, et al. Function of sirtuins in biological tissues. Anat Record. 2009;292(4):536–543.
  • Fang J. The role of Sirt7 and Sirt1 in adipocyte differentiation and maintenance of metabolic homeostasis. 2015.
  • North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 2004;5(5):224.
  • Tang BL. Sirtuins as modifiers of Parkinson’s disease pathology. J Neurosci Res. 2017;95(4):930–942.
  • Jęśko H, Wencel P, Strosznajder R, et al. Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res. 2017;42(3):876–890.
  • Haigis MC, Guarente LP . Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20(21):2913–2921.
  • Moynihan K, Grimm A, Plueger M, et al . Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005;2(2):105–117.
  • Stünkel W, Peh BK, Tan YC, et al. Function of the SIRT1 protein deacetylase in cancer. Biotechnol J. 2007;2(11):1360–1368.
  • Jin Q, Yan T, Ge X, et al. Cytoplasm-localized SIRT1 enhances apoptosis. J Cell Physiol. 2007;213(1):88–97.
  • Yanagisawa S, Baker J, Vuppusetty C, et al. The dynamic shuttling of SIRT1 between cytoplasm and nuclei in bronchial epithelial cells by single and repeated cigarette smoke exposure. PLoS One. 2018;13(3):e0193921.
  • Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005;280(17):17187–17195.
  • Outeiro TF, Kontopoulos E, Altmann S, et al . Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science. 2007;317(5837):516–519.
  • Zhang H, Ryu D, Wu Y, et al. NAD + repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016;352(6292):1436–1443.
  • Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116(4):551–563.
  • Picard F, Kurtev M, Chung N, et al . Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771–776.
  • Rodgers J, Lerin C, Haas W, et al . Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113–118.
  • Li K, Casta A, Wang R, et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem. 2008;283(12):7590–7598.
  • North B, Marshall B, Borra M, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003;11(2):437–444.
  • Vergnes B, Vanhille L, Ouaissi A, et al. Stage-specific antileishmanial activity of an inhibitor of SIR2 histone deacetylase. Acta Trop. 2005;94(2):107–115.
  • Inoue T, Hiratsuka M, Osaki M, et al. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene. 2007;26(7):945–957.
  • Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res. 2014;114(2):368–378.
  • de Oliveira RM, Vicente Miranda H, Francelle L, et al . The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biol. 2017;15(3):e2000374.
  • Machado De Oliveira R, Sarkander J, Kazantsev AG, et al. SIRT2 as a therapeutic target for age-related disorders. Front Pharmacol. 2012;3:82.
  • Wei W, Xu X, Li H, et al. The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease: a meta-analysis. Neuromolecular Med. 2014;16(2):448–456.
  • North BJ, Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One. 2007;2(8):e784.
  • Ahn B-H, Kim H-S, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA. 2008;105(38):14447–14452.
  • Ansari A, Rahman MS, Saha S, et al . Function of the SIRT3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell. 2017;16(1):4–16.
  • Samant S, Zhang H, Hong Z, et al. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol. 2014;34(5):807–819.
  • Papa L, Germain D. Correction for papa and germain,“SirT3 regulates a novel arm of the mitochondrial unfolded protein response”. Mol Cell Biol. 2017;37(13):e00191-17.
  • Zhang H, Lu Y, Zhao Y, et al. OsSRT1 is involved in rice seed development through regulation of starch metabolism gene expression. Plant Sci. 2016;248:28–36.
  • Pannek M, Simic Z, Fuszard M, et al. Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features. Nat Commun. 2017;8(1):1513.
  • Wood JG, Schwer B, Wickremesinghe PC, et al. Sirt4 is a mitochondrial regulator of metabolism and lifespan in Drosophila melanogaster. Proc Natl Acad Sci USA. 2018;115(7):1564–1569.
  • Tomaselli D, Steegborn C, Mai A, et al. Sirt4: a multifaceted enzyme at the crossroads of mitochondrial metabolism and cancer. Front Oncol. 2020;10:474.
  • Herskovits AZ, Guarente L. Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res. 2013;23(6):746.
  • Jeong SM, Xiao C, Finley L, et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell. 2013;23(4):450–463.
  • Huang G, Cheng J, Yu F, et al. Clinical and therapeutic significance of sirtuin-4 expression in colorectal cancer. Oncol Rep. 2016;35(5):2801–2810.
  • Min S-W, Sohn PD, Li Y, et al. SIRT1 deacetylates tau and reduces pathogenic tau spread in a mouse model of tauopathy. J Neurosci. 2018;38(15):3680–3688.
  • Schirmer H, Pereira TCB, Rico EP, et al . Modulatory effect of resveratrol on SIRT1, SIRT3, SIRT4, PGC1α and NAMPT gene expression profiles in wild-type adult zebrafish type adult zebrafish liver. Mol Biol Rep. 2012;39(3):3281–3289.
  • Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol. 2008;382(3):790–801.
  • Matsushita N, Yonashiro R, Ogata Y, et al. Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells. 2011;16(2):190–202.
  • Jia G, Su L, Singhal S, et al. Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging. Mol Cell Biochem. 2012;364(1-2):345–350.
  • Outeiro TF, Marques O, Kazantsev A. Therapeutic role of sirtuins in neurodegenerative disease. Biochim Biophys Acta. 2008;1782(6):363–369.
  • Kugel S, Mostoslavsky R. Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem Sci. 2014;39(2):72–81.
  • Li X, Liu L, Li T, et al. SIRT6 in senescence and aging-related cardiovascular diseases. Front Cell Dev Biol. 2021;9:739.
  • Gallagher EJ, LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev. 2015;95(3):727–748.
  • Larsen MO, Rolin B. Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J. 2004;45(3):303–313.
  • Michishita E, McCord R, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008;452(7186):492–496.
  • Michishita E, McCord R, Boxer L, et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle. 2009;8(16):2664–2666.
  • Haigis M, Mostoslavsky R, Haigis K, et al . SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006;126(5):941–954.
  • Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20(9):1075–1080.
  • Tang M, Tang H, Tu B, et al. SIRT7: a sentinel of genome stability. Open Biol. 2021;11(6):210047.
  • Mohrin M, Shin J, Liu Y, et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science. 2015;347(6228):1374–1377.
  • Axsom JE, Schmidt HD, Matura LA, et al. The influence of epigenetic modifications on metabolic changes in white adipose tissue and liver and their potential impact in exercise. Front Physiol. 2021;12:686270.
  • Bendixen E, Danielsen M, Larsen K, et al . Advances in porcine genomics and proteomics—a toolbox for developing the pig as a model organism for molecular biomedical research. Brief Funct Genomics. 2010;9(3):208–219.
  • Bellinger DA, Merricks EP, Nichols TC. Swine models of type 2 diabetes mellitus: insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J. 2006;47(3):243–258.
  • Bai P, Cantó C, Oudart H, et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011;13(4):461–468.
  • Gabisonia K, Prosdocimo G, Aquaro GD, et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature. 2019;569(7756):418–422.
  • Almond GW. Research applications using pigs. Vet Clin North Am Food Anim Pract. 1996;12(3):707–716.
  • Bai L, Pang W-J, Yang Y-J, et al. Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol Cell Biochem. 2008;307(1-2):129–140.
  • Vodička P, Smetana K Jr, Dvoránková B, et al. The miniature pig as an animal model in biomedical research. Ann NY Acad Sci. 2005;1049(1):161–171.
  • Ghinis-Hozumi Y, Antaramian A, Villarroya F, et al. Potential role of sirtuins in livestock production. Animal. 2013;7(1):101–108.
  • Ren Y, Shan TZ, Zhu LN, et al. Effect of breed on the expression of Sirtuins (Sirt1-7) and antioxidant capacity in porcine brain. Animal. 2013;7(12):1994–1998.
  • Shan T, Wang Y, Wu T, et al. Porcine sirtuin 1 gene clone, expression pattern, and regulation by resveratrol. J Anim Sci. 2009;87(3):895–904.
  • Ma R, Zhang Y, Zhang L, et al. Sirt1 protects pig oocyte against in vitro aging. Anim Sci J. 2015;86(9):826–832.
  • Luo H, Zhou M, Ji K, et al. Expression of sirtuins in the retinal neurons of mice, rats, and humans. Front Aging Neurosci. 2017;9:366.
  • Nakamura Y, Ogura M, Tanaka D, et al. Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5. Biochem Biophys Res Commun. 2008;366(1):174–179.
  • Wang C, Dawes L, Liu Y, et al. Dexamethasone influences FGF-induced responses in lens epithelial explants and promotes the posterior capsule coverage that is a feature of glucocorticoid-induced cataract. Exp Eye Res. 2013;111:79–87.
  • Peng C-H, Chang YL, Kao CL, et al. SirT1—a sensor for monitoring self-renewal and aging process in retinal stem cells. Sensors. 2010;10(6):6172–6194.
  • Sasaki M, Yuki K, Kurihara T, et al. Biological role of lutein in the light-induced retinal degeneration. J Nutr Biochem. 2012;23(5):423–429.
  • Osborne B, Bentley N, Montgomery M, et al. The role of mitochondrial sirtuins in health and disease. Free Radic Biol Med. 2016;100:164–174.
  • Silberman DM, Ross K, Sande PH, et al. SIRT6 is required for normal retinal function. PLoS One. 2014;9(6):e98831.
  • Kim H-S, Xiao C, Wang R-H, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010;12(3):224–236.
  • Nimmagadda V, Bever C, Vattikunta N, et al. Overexpression of SIRT1 protein in neurons protects against experimental autoimmune encephalomyelitis through activation of multiple SIRT1 targets. J Immunol. 2013;190(9):4595–4607.
  • Kim D, Nguyen MD, Dobbin M, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J. 2007;26(13):3169–3179.
  • Liu Q, Zhu D, Jiang P, et al. Resveratrol synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson disease in mice. Behav Brain Res. 2019;367:10–18.
  • Pallos J, Bodai L, Lukacsovich T, et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Human Mol Genet. 2008;17(23):3767–3775.
  • Pichler F, Laurenson S, Williams L, et al. Chemical discovery and global gene expression analysis in zebrafish. Nat Biotechnol. 2003;21(8):879–883.
  • Barbazuk WB, Korf I, Kadavi C, et al. The syntenic relationship of the zebrafish and human genomes. Genome Res. 2000;10(9):1351–1358.
  • Pereira TCB, Rico EP, Rosemberg DB, et al. Zebrafish as a model organism to evaluate drugs potentially able to modulate sirtuin expression. Zebrafish. 2011;8(1):9–16.
  • Do Hee Kim IHJ, Kim DH, Park SW. Knockout of longevity gene Sirt1 in zebrafish leads to oxidative injury, chronic inflammation, and reduced life span. PLoS One. 2019;14(8):e0220581.
  • Rahman M, Nirala N, Singh A, et al. Drosophila Sirt2/mammalian SIRT3 deacetylates ATP synthase β and regulates complex V activity. J Cell Biol. 2014;206(2):289–305.
  • Rosenberg MI, Parkhurst SM . Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell. 2002;109(4):447–458.
  • Frankel S, Ziafazeli T, Rogina B. dSir2 and longevity in Drosophila. Exp Gerontol. 2011;46(5):391–396.
  • Tanny JC, Moazed D. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product Proc Natl Acad Sci USA. 2001;98(2):415–420.
  • Banerjee KK, Ayyub C, Ali SZ, et al. dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep. 2012;2(6):1485–1491.
  • Griswold AJ, Chang KT, Runko AP, et al. Sir2 mediates apoptosis through JNK-dependent pathways in Drosophila. Proc Natl Acad Sci USA. 2008;105(25):8673–8678.
  • Åström SU, Cline TW, Rine J. The Drosophila melanogaster sir2+ gene is nonessential and has only minor effects on position-effect variegation. Genetics. 2003;163(3):931–937.
  • Feller C, Forné I, Imhof A, et al. Global and specific responses of the histone acetylome to systematic perturbation. Mol Cell. 2015;57(3):559–571.
  • Taylor J, Wood J,Chang C, et al. Regulation of lifespan by dsirt6 in DROSOPHILA MELANOGASTER. Innovat Aging. 2018;2(Suppl 1):90.
  • Wierman MB, Smith JS. Yeast sirtuins and the regulation of aging. FEMS Yeast Res. 2014;14(1):73–88.
  • Derbyshire MK, Weinstock KG, Strathern JN. HST1, a new member of the SIR2 family of genes. Yeast. 1996;12(7):631–640.
  • Brachmann CB, Sherman JM, Devine SE, et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 1995;9(23):2888–2902.
  • Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795–800.
  • Viswanathan M, Tissenbaum HA. C. elegans sirtuins. In Sirtuins. New York, NY: Springer; 2013:39–56.
  • Cantó C, Houtkooper RH. Sirtuins and aging. In Sirtuins. New York, NY: Springer; 2016:213–227.
  • Chang SM, McReynolds MR, Hanna-Rose W. Mitochondrial sirtuins sir-2.2 and sir-2.3 regulate lifespan in C. elegans. bioRxiv. 2017;2017:181727.
  • Dang W. The controversial world of sirtuins. Drug Discovery Today Technol. 2014;12:e9–e17.
  • Zheng W. The plant sirtuins. Plant Sci. 2020;2020:110434.
  • Zhang H, Zhao Y, Zhou D-X. Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes. Nucleic Acids Res. 2017;45(21):12241–12255.
  • Chung PJ, Kim YS, Park S-H, et al. Subcellular localization of rice histone deacetylases in organelles. FEBS Lett. 2009;583(13):2249–2254.
  • Lu Y, Xu Q, Liu Y, et al. Dynamics and functional interplay of histone lysine butyrylation, crotonylation, and acetylation in rice under starvation and submergence. Genome Biol. 2018;19(1):1–14.
  • Chen Z, Luo L, Chen R, et al. Acetylome profiling reveals extensive lysine acetylation of the fatty acid metabolism pathway in the diatom Phaeodactylum tricornutum. Mol Cell Proteomics. 2018;17(3):399–412.
  • Yang C, Shen W, Chen H, et al. Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean. BMC Plant Biol. 2018;18(1):1–13.
  • Chen J, Zhou Y, Mueller-Steiner S, et al . SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem. 2005;280(48):40364–40374.
  • Cucurachi M, Busconi M, Morreale G, et al. Characterization and differential expression analysis of complete coding sequences of Vitis vinifera L. sirtuin genes. Plant Physiol Biochem. 2012;54:123–132.
  • Zhao L, Lu J, Zhang J, et al. Identification and characterization of histone deacetylases in tomato (Solanum lycopersicum). Front Plant Sci. 2014;5:760.
  • Ho Y-S, So K-F, Chang RC-C. Anti-aging herbal medicine—how and why can they be used in aging-associated neurodegenerative diseases? Ageing Res Rev. 2010;9(3):354–362.
  • Albers DS, Beal MF. Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. In Advances in dementia research. New York, NY: Springer; 2000. p. 133–154.
  • Braidy N, Poljak A, Grant R, et al. Differential expression of sirtuins in the aging rat brain. Front Cell Neurosci. 2015;9:167.
  • Pallàs M, Verdaguer E, Tajes M, et al. Modulation of sirtuins: new targets for antiageing. Recent Pat CNS Drug Discov. 2008;3(1):61–69.
  • Schwer B, Bunkenborg J, Verdin RO, et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA. 2006;103(27):10224–10229.
  • Smith BC, Denu JM. Sirtuins caught in the act. Structure. 2006;14(8):1207–1208.
  • Kennedy BK, Austriaco Jr NR, Zhang J, et al. Mutation in the silencing gene S/R4 can delay aging in S. cerevisiae. Cell. 1995;80(3):485–496.
  • Poulose N, Raju R. Sirtuin regulation in aging and injury. Biochim Biophys Acta. 2015;1852(11):2442–2455.
  • Sacks FM. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr Opin Lipidol. 2015;26(1):56–63.
  • Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570–2580.
  • Lin S-J, Defossez P-A, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000;289(5487):2126–2128.
  • Lin K, Hsin H, Libina N, et al. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet. 2001;28(2):139–145.
  • Baohua Y, Li L. Effects of SIRT6 silencing on collagen metabolism in human dermal fibroblasts. Cell Biol Int. 2012;36(1):105–108.
  • Wang Q-L, Guo S-J. Sirtuins function as the modulators in aging-related diseases in common or respectively. Chin Med J (Engl). 2015;128(12):1671–1678.
  • Finley LW, Haigis MC. Metabolic regulation by SIRT3: implications for tumorigenesis. Trends Mol Med. 2012;18(9):516–523.
  • Giralt A, Villarroya F. SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J. 2012;444(1):1–10.
  • Werner CT, Williams CJ, Fermelia MR, et al. Circuit mechanisms of neurodegenerative diseases: a new frontier with miniature fluorescence microscopy. Front Neurosci. 2019;13:1174.
  • Sheikh S, Haque E, Mir SS. Neurodegenerative diseases: multifactorial conformational diseases and their therapeutic interventions. J Neurodegener Dis. 2013;2013:563481.
  • Wood LB, Winslow AR, Strasser SD. Systems biology of neurodegenerative diseases. Integr Biol (Camb). 2015;7(7):758–775.
  • Beal MF, Lang AE, Ludolph AC. Neurodegenerative diseases: neurobiology, pathogenesis and therapeutics. Cambridge, UK: Cambridge University Press; 2005.
  • Hirth F. Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Target. 2010;9(4):504–523.
  • Hung C-W, Chen Y-C, Hsieh W-L, et al. Ageing and neurodegenerative diseases. Ageing Res Rev. 2010;9:S36–S46.
  • Francis PT, Palmer AM, Snape M, et al . The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;66(2):137–147.
  • Guo J, Cheng J, North BJ, et al. Functional analyses of major cancer-related signaling pathways in Alzheimer’s disease etiology. Biochim Biophys Acta. 2017;1868(2):341–358.
  • Hippius H, Neundörfer G. The discovery of Alzheimer’s disease. Dialogues Clin Neurosci. 2003;5(1):101–108.
  • Hoekstra JG, Montine KS, Zhang J, et al. Mitochondrial therapeutics in Alzheimer’s disease and Parkinson’s disease. Alzheimers Res Therapy. 2011;3(3):21.
  • O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204.
  • Galasko DR, Shaw LM. Alzheimer disease: CSF biomarkers for Alzheimer disease—approaching consensus. Nat Rev Neurol. 2017;13(3):131.
  • Biella G, Fusco F, Nardo E, et al . Sirtuin 2 inhibition improves cognitive performance and acts on amyloid-β protein precursor processing in two Alzheimer’s disease mouse models. J Alzheimers Dis. 2016;53(3):1193–1207.
  • Jeibmann A, Paulus W. Drosophila melanogaster as a model organism of brain diseases. Int J Mol Sci. 2009;10(2):407–440.
  • Rajasekhar K, Chakrabarti M, Govindaraju T. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease. Chem Commun (Camb). 2015;51(70):13434–13450.
  • Yin J, Han P, Song M, et al. Amyloid-β increases tau by mediating sirtuin 3 in Alzheimer’s disease. Mol Neurobiol. 2018;55:8592–8601.
  • Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 activity control in neurodegenerative diseases. Front Pharmacol. 2021;11:1899.
  • Bonda D, Lee H-G, Camins A, et al. The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol. 2011;10(3):275–279.
  • Sundaresan N, Pillai V, Wolfgeher D, et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 2011;4(182):ra46–ra46.
  • Yang W, Zou Y, Zhang M, et al. Mitochondrial Sirt3 expression is decreased in APP/PS1 double transgenic mouse model of Alzheimer’s disease. Neurochem Res. 2015;40(8):1576–1582.
  • Motyl J, Wencel PL, Cieślik M, et al. Alpha-synuclein alters differently gene expression of Sirts, PARPs and other stress response proteins: implications for neurodegenerative disorders. Mol Neurobiol. 2018;55(1):727–740.
  • Salvatori I, Valle C, Ferri A, et al. SIRT3 and mitochondrial metabolism in neurodegenerative diseases. Neurochem Int. 2017;109:184–192.
  • Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci. 2006;7(4):278–294.
  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–795.
  • Mäkelä J, Tselykh T, Kukkonen J, et al. Peroxisome proliferator-activated receptor-γ (PPARγ) agonist is neuroprotective and stimulates PGC-1α expression and CREB phosphorylation in human dopaminergic neurons. Neuropharmacology. 2016;102:266–275.
  • Rugarli EI, Langer T. Mitochondrial quality control: a matter of life and death for neurons. EMBO J. 2012;31(6):1336–1349.
  • Abou-Sleiman PM, Muqit MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci. 2006;7(3):207–219.
  • Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008;4(11):600–609.
  • Hasegawa K, Yasuda T, Shiraishi C, et al. Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults. Nat Commun. 2016;7(1):1–15.
  • Eschbach J, von Einem B, Müller K, et al . Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization. Ann Neurol. 2015;77(1):15–32.
  • Khanna A, Acharjee P, Acharjee A, et al. Mitochondrial SIRT3 and neurodegenerative brain disorders. J Chem Neuroanat. 2017;95:43–53.
  • Signorile A, Santeramo A, Tamma G, et al. Mitochondrial cAMP prevents apoptosis modulating Sirt3 protein level and OPA1 processing in cardiac myoblast cells. Biochim Biophys Acta. 2017;1864(2):355–366.
  • Duan W. Targeting sirtuin-1 in Huntington’s disease: rationale and current status. CNS Drugs. 2013;27(5):345–352.
  • Proenca CC, Stoehr N, Bernhard M, et al. Atg4b-dependent autophagic flux alleviates Huntington’s disease progression. PLoS One. 2013;8(7):e68357.
  • Schulte J, Littleton JT. The biological function of the Huntingtin protein and its relevance to Huntington’s disease pathology. Curr Trends Neurol. 2011;5:65.
  • Quarrell OW, Rigby AJ, Barron L, et al. Reduced penetrance alleles for Huntington’s disease: a multi-centre direct observational study. J Med Genet. 2007;44(3):e68–e68.
  • Nopoulos PC. Huntington disease: a single-gene degenerative disorder of the striatum. Dialogues Clin Neurosci. 2016;18(1):91–98.
  • Browne SE. Mitochondria and Huntington’s disease pathogenesis: insight from genetic and chemical models. Ann NY Acad Sci. 2008;1147(1):358–382.
  • Imarisio S, Carmichael J, Korolchuk V, et al. Huntington’s disease: from pathology and genetics to potential therapies. Biochem J. 2008;412(2):191–209.
  • Cui L, Jeong H, Borovecki F, et al . Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell. 2006;127(1):59–69.
  • Weydt P, Pineda VV, Torrence AE, et al. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1α in Huntington’s disease neurodegeneration. Cell Metab. 2006;4(5):349–362.
  • Parker A, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet. 2005;37(4):349–350.
  • Ho DJ, Calingasan NY, Wille E, et al. Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease. Exp Neurol. 2010;225(1):74–84.
  • Giralt A, Carretón O, Lao-Peregrin C, et al. Conditional BDNF release under pathological conditions improves Huntington’s disease pathology by delaying neuronal dysfunction. Mol Neurodegener. 2011;6(1):71.
  • Xie Y, Hayden MR, Xu B. BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci. 2010;30(44):14708–14718.
  • Luthi-Carter R, Taylor DM, Pallos J, et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci USA. 2010;107(17):7927–7932.
  • Fu J, Jin J, Cichewicz RH, et al. trans-(−)-ϵ-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington disease. J Biol Chem. 2012;287(29):24460–24472.
  • Butterworth J, Yates CM, Reynolds GP. Distribution of phosphate-activated glutaminase, succinic dehydrogenase, pyruvate dehydrogenase and γ-glutamyl transpeptidase in post-mortem brain from Huntington’s disease and agonal cases. J Neurol Sci. 1985;67(2):161–171.
  • Ferreira IL, Cunha-Oliveira T, Nascimento MV, et al. Bioenergetic dysfunction in Huntington’s disease human cybrids. Exp Neurol. 2011;231(1):127–134.
  • Naia L, Cunha-Oliveira T, Rodrigues J, et al. Histone deacetylase inhibitors protect against pyruvate dehydrogenase dysfunction in Huntington’s disease. J Neurosci. 2017;37(10):2776–2794.
  • Fan J, Shan C, Kang H-B, et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol Cell. 2014;53(4):534–548.
  • Anderson R, Bitterman K, Wood J, et al. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003;423(6936):181–185.
  • Cozzolino M, Carrì MT. Mitochondrial dysfunction in ALS. Prog Neurobiol. 2012;97(2):54–66.
  • Tan W, Pasinelli P, Trotti D. Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis. Biochim Biophys Acta. 2014;1842(8):1295–1301.
  • Rice C, Sun M, Kemp K, et al. Mitochondrial sirtuins–a new therapeutic target for repair and protection in multiple sclerosis. Eur J Neurosci. 2012;35(12):1887–1893.
  • Foolad F, Khodagholi F, Javan M. Sirtuins in multiple sclerosis: the crossroad of neurodegeneration, autoimmunity and metabolism. Mult Scler Relat Disord. 2019;34:47–58.
  • Baranzini SE, Srinivasan R, Khankhanian P, et al. Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis. Brain. 2010;133(9):2603–2611.
  • Geurts JJG, Wolswijk G, Bö L, et al. Expression patterns of group III metabotropic glutamate receptors mGluR4 and mGluR8 in multiple sclerosis lesions. J Neuroimmunol. 2005;158(1-2):182–190.
  • Faghihzadeh F, Adibi P, Rafiei R, et al. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr Res. 2014;34(10):837–843.
  • Witte AV, Kerti L, Margulies DS, et al. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci. 2014;34(23):7862–7870.
  • Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflamm. 2017;14(1):1–10.
  • Milne JC, Denu JM. The sirtuin family: therapeutic targets to treat diseases of aging. Curr Opin Chem Biol. 2008;12(1):11–17.
  • Singh S, McClung J, Thompson E, et al. Cardioprotective heme oxygenase-1-PGC1α signaling in epicardial fat attenuates cardiovascular risk in humans as in obese mice. Obesity (Silver Spring). 2019;27(10):1634–1643.
  • Sidorova-Darmos E, Sommer R, Eubanks JH. The role of SIRT3 in the brain under physiological and pathological conditions. Front Cell Neurosci. 2018;12:196.
  • Zhao H-C, Ding T, Ren Y, et al. Role of Sirt3 in mitochondrial biogenesis and developmental competence of human in vitro matured oocytes. Human Reprod. 2016;31(3):607–622.
  • Morigi M, Perico L, Rota C, et al . Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J Clin Invest. 2015;125(2):715–726.
  • Miyo M, Yamamoto H, Konno M, et al. Tumour-suppressive function of SIRT4 in human colorectal cancer. Br J Cancer. 2015;113(3):492–499.
  • Kumar S, Lombard DB. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology. Crit Rev Biochem Mol Biol. 2018;53(3):311–334.
  • Guedouari H, Daigle T, Scorrano L, et al. Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation. Biochim Biophys Acta. 2017;1864(1):169–176.
  • Liu L, Peritore C, Ginsberg J, et al. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease. Behav Brain Res. 2015;281:215–221.
  • Wood J, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430(7000):686–689.
  • Raj S, Dsouza LA, Singh SP, et al. Sirt6 deacetylase: a potential key regulator in the prevention of obesity, diabetes and neurodegenerative disease. Front Pharmacol. 2020;11:598326.
  • Jung ES, Choi H, Song H, et al. p53-dependent SIRT6 expression protects Aβ42-induced DNA damage. Sci Rep. 2016;6(1):1–11.
  • Satoh A, Imai S-i. Systemic regulation of mammalian ageing and longevity by brain sirtuins. Nat Commun. 2014;5(1):1–11.
  • Kanwal A, Dsouza LA. Sirtuins and diabetes: optimizing the sweetness in the blood. Translational Medicine Communications. 2019;4(1):1–8.
  • Alcaın F, Villalba J. Sirtuin inhibitors. Expert Opin Ther Pat. 2009;19:283–294.
  • Wątroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. Adv Med Sci. 2016;61(1):52–62.
  • Lagouge M, Argmann C, Gerhart-Hines Z, et al . Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109–1122.
  • Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305(5686):1010–1013.
  • Nayagam V, Wang X, Tan YC, et al. SIRT1 modulating compounds from high-throughput screening as anti-inflammatory and insulin-sensitizing agents. J Biomol Screen. 2006;11(8):959–967.
  • Yang H, Yang T, Baur J, et al. Nutrient-sensitive mitochondrial NAD + levels dictate cell survival. Cell. 2007;130(6):1095–1107.
  • Baur J, Pearson K, Price N, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–342.
  • Dai H, Kustigian L, Carney D, et al . SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem. 2010;285(43):32695–32703.
  • Kayashima Y, Katayanagi Y, Tanaka K, et al. Alkylresorcinols activate SIRT1 and delay ageing in Drosophila melanogaster. Sci Rep. 2017;7:43679.
  • Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506.
  • Cohen H, Miller C, Bitterman K, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305(5682):390–392.
  • de Boer V, de Goffau M, Arts I, et al. SIRT1 stimulation by polyphenols is affected by their stability and metabolism. Mech Ageing Dev. 2006;127(7):618–627.
  • Stacchiotti A, Favero G, Rezzani R. Resveratrol and SIRT1 activators for the treatment of aging and age-related diseases. In Resveratrol-adding life to years, not adding years to life. London, UK: IntechOpen; 2018.
  • Villalba JM, Alcaín FJ. Sirtuin activators and inhibitors. Biofactors. 2012;38(5):349–359.
  • Alcaín FJ, Villalba JM. Sirtuin activators. Expert Opin Ther Pat. 2009;19(4):403–414.
  • Camins A, Sureda FX, Junyent F, et al. Sirtuin activators: designing molecules to extend life span. Biochim Biophys Acta. 2010;1799(10-12):740–749.
  • Milne J, Lambert P, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450(7170):712–716.
  • Ross CA. Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron. 2002;35(5):819–822.
  • Aggarwal BB, Sundaram C, Malani N, et al. Curcumin: the Indian solid gold. In The molecular targets and therapeutic uses of curcumin in health and disease. New York, NY: Springer; 2007:1–75.
  • Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Alternat Med Rev. 2009;14(2):141–153.
  • Toklu HZ, Ginory A. Sirtuin modulators and brain aging. In Molecular basis and emerging strategies for anti-aging interventions. New York, NY: Springer; 2018:133–149.
  • Miao Y, Zhao S, Gao Y, et al. Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: the possible role of Sirt1 signaling. Brain Res Bull. 2016;121:9–15.
  • Gaschler R, Schwager S, Umbach VJ, et al. Expectation mismatch: differences between self-generated and cue-induced expectations. Neurosci Biobehav Rev. 2014;46:139–157.
  • Khader A, Yang W-L, Hansen LW, et al. SRT1720, a sirtuin 1 activator, attenuates organ injury and inflammation in sepsis. J Surg Res. 2017;219:288–295.
  • Mitchell S, Martin-Montalvo A, Mercken E, et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 2014;6(5):836–843.
  • Kane AE, Sinclair DA. Pharmacological approaches for modulating sirtuins. In Introductory review on sirtuins in biology, aging, and disease. Amsterdam, the Netherlands: Elsevier; 2018:71–81.
  • Libri V, Brown AP, Gambarota G, et al. A pilot randomized, placebo controlled, double blind phase I trial of the novel SIRT1 activator SRT2104 in elderly volunteers. PLoS One. 2012;7(12):e51395.
  • Venkatasubramanian S, Noh RM, Daga S, et al. Cardiovascular effects of a novel SIRT 1 activator, SRT 2104, in otherwise healthy cigarette smokers. J Am Heart Assoc. 2013;2(3):e000042.
  • Andres S, Pevny S, Ziegenhagen R, et al. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 2018;62(1):1700447.
  • Davis JM, Murphy EA, Carmichael MD, et al. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integ Compar Physiol. 2009;296(4):R1071–R1077.
  • Nieman DC, Williams AS, Shanely RA, et al. Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Med Sci Sports Exer. 2010;42(2):338–345.
  • Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373–379.
  • Hong S, Zhao B, Lombard DB, et al. Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J Biol Chem. 2014;289(19):13132–13141.
  • Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 2010;5(2):e9199.
  • Pan H, Finkel T. Key proteins and pathways that regulate lifespan. J Biol Chem. 2017;292(16):6452–6460.
  • Johnson SC, Yanos ME, Kayser EB, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524–1528.
  • Blagosklonny MV. An anti-aging drug today: from senescence-promoting genes to anti-aging pill. Drug Discov Today. 2007;12(5-6):218–224.
  • López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153(6):1194–1217.
  • Williams P, Harder J, Foxworth N, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355(6326):756–760.
  • Giblin W, Lombard DB. Sirtuins, healthspan, and longevity in mammals. In Handbook of the biology of aging. Amsterdam, the Netherlands: Elsevier; 2016:83–132.
  • Kozako T, Aikawa A, Shoji T, et al . High expression of the longevity gene product SIRT1 and apoptosis induction by sirtinol in adult T-cell leukemia cells. Int J Cancer. 2012;131(9):2044–2055.
  • Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci. 2014;35(3):146–154.
  • Mercken EM, Mitchell SJ, Martin-Montalvo A, et al. SRT 2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell. 2014;13(5):787–796.
  • Turner S, Thomas R, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85(16):1383–1391.
  • Neugebauer R, Uchiechowska U, Meier R, et al. Structure-activity studies on splitomicin derivatives as sirtuin inhibitors and computational prediction of binding mode. J Med Chem. 2008;51(5):1203–1213.
  • Ota H, Tokunaga E, Chang K, et al. Sirt1 inhibitor, sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene. 2006;25(2):176–185.
  • Jin KL, Park J-Y, Noh EJ, et al. The effect of combined treatment with cisplatin and histone deacetylase inhibitors on HeLa cells. J Gynecol Oncol. 2010;21(4):262–268.
  • Kojima K, Ohhashi R, Fujita Y, et al. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem Biophys Res Commun. 2008;373(3):423–428.
  • Peck B, Chen C-Y, Ho K-K, et al. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol Cancer Ther. 2010;9(4):844–855.
  • Carafa V, Rotili D, Forgione M, et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenet. 2016;8(1):61.
  • Biacsi R, Kumari D, Usdin K. SIRT1 inhibition alleviates gene silencing in fragile X mental retardation syndrome. PLos Genet. 2008;4(3):e1000017.
  • Bedalov A, Gatbonton T, Irvine WP, et al. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA. 2001;98(26):15113–15118.
  • Liu G, Su L, Hao X, et al . Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. J Cell Mol Med. 2012;16(7):1618–1628.
  • Lara E, Mai A, Calvanese V, et al. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene. 2009;28(6):781–791.
  • He X, Nie H, Hong Y, et al. SIRT2 activity is required for the survival of C6 glioma cells. Biochem Biophys Res Commun. 2012;417(1):468–472.
  • Howitz K, Bitterman K, Cohen H, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191–196.
  • Perabo FG, Müller SC. New agents in intravesical chemotherapy of superficial bladder cancer. Scand J Urol Nephrol. 2005;39(2):108–116.
  • Napper A, Hixon J, McDonagh T, et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem. 2005;48(25):8045–8054.
  • Zhang F, Wang S, Gan L, et al. Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol. 2011;95(3):373–395.
  • Arrowsmith C, Bountra C, Fish P, et al. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11(5):384–400.
  • Solomon JM, Pasupuleti R, Xu L, et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol. 2006;26(1):28–38.
  • Karaman B, Jung M, Sippl W. Structure-based design and computational studies of sirtuin inhibitors. In Epi-informatics. Amsterdam, the Netherlands: Elsevier; 2016:297–325.
  • Lain S, Hollick J, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell. 2008;13(5):454–463.
  • Yuan H, Wang Z, Li L, et al. Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood. 2012;119(8):1904–1914.
  • Lugrin J, Ciarlo E, Santos A, et al. The sirtuin inhibitor cambinol impairs MAPK signaling, inhibits inflammatory and innate immune responses and protects from septic shock. Biochim Biophys Acta. 2013;1833(6):1498–1510.
  • Heltweg B, Gatbonton T, Schuler A, et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 2006;66(8):4368–4377.
  • Uciechowska U, Schemies J, Neugebauer RC, et al. Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations, and biological testing. ChemMedChem. 2008;3(12):1965–1976.
  • Audrito V, Vaisitti T, Rossi D, et al. Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Res. 2011;71(13):4473–4483.
  • Wang R-H, Sengupta K, Li C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008;14(4):312–323.
  • Pagans S, Pedal A, North BJ, et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 2005;3(2):e41.
  • Katsyuba E, Auwerx J. NAD + modulation: Biology and therapy. In Introductory review on sirtuins in biology, aging, and disease. Amsterdam, the Netherlands: Elsevier; 2018:27–44.
  • Belenky P, Racette F, Bogan K, et al. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell. 2007;129(3):473–484.
  • Easlon E, Tsang F, Skinner C, et al . The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev. 2008;22(7):931–944.
  • Mouchiroud L, Houtkooper RH, Moullan N, et al. The [NAD + over Sirtuin] Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. 2013.
  • Gong B, Pan Y, Vempati P, et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol Aging. 2013;34(6):1581–1588.
  • Lehmann S, Loh SH, Martins LM. Enhancing NAD + salvage metabolism is neuroprotective in a PINK1 model of Parkinson’s disease. Biol Open. 2017;6(2):141–147.
  • Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006;281(31):21745–21754.
  • Turunc Bayrakdar E, Uyanikgil Y, Kanit L, et al. Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Aβ(1-42)-induced rat model of Alzheimer’s disease. Free Radic Res. 2014;48(2):146–158.
  • Wang X, Hu X, Yang Y, et al. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 2016;1643:1–9.
  • Sasaki Y, Araki T, Milbrandt J. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci. 2006;26(33):8484–8491.
  • Wang J, Zhai Q, Chen Y, et al. A local mechanism mediates NAD-dependent protection of axon degeneration. J Cell Biol. 2005;170(3):349–355.
  • Brown K, Maqsood S, Huang J-Y, et al. Activation of SIRT3 by the NAD + precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 2014;20(6):1059–1068.
  • Shindler K, Ventura E, Rex T, et al. SIRT1 activation confers neuroprotection in experimental optic neuritis. Invest Ophthalmol Vis Sci. 2007;48(8):3602–3609.
  • Penberthy WT. Nicotinic acid-mediated activation of both membrane and nuclear receptors towards therapeutic glucocorticoid mimetics for treating multiple sclerosis. PPAR Res. 2009;2009:853707.
  • Camacho-Pereira J, Tarragó M, Chini C, et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 2016;23(6):1127–1139.
  • Boslett J, Hemann C, Zhao YJ, et al. Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD (P)(H). J Pharmacol Exp Ther. 2017;361(1):99–108.
  • Escande C, Nin V, Price N, et al. Flavonoid apigenin is an inhibitor of the NAD + ase CD38: implications for cellular NAD + metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes. 2013;62(4):1084–1093.
  • Haffner C, Becherer D, Boros E, et al . Discovery, synthesis, and biological evaluation of thiazoloquin(az)olin(on)es as potent CD38 inhibitors. J Med Chem. 2015;58(8):3548–3571.
  • Gariani K, Ryu D, Menzies KJ, et al. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J Hepatol. 2017;66(1):132–141.
  • Horton JL, Martin OJ, Lai L, et al. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight. 2016;1(2):e84897.
  • Gomes A, Price N, Ling A, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624–1638.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.