222
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Targeting the differentiation of astrocytes by Bilobalide in the treatment of Parkinson’s disease model

ORCID Icon, , , , , , , , , , , & show all
Pages 274-291 | Received 09 Feb 2022, Accepted 30 Jun 2022, Published online: 29 Aug 2022

References

  • Dahodwala N, Li P, Jahnke J, et al. Burden of Parkinson’s disease by severity: health care costs in the U.S. Medicare Population. Mov Disord. 2021;36(1):133–142.
  • Wilkaniec A, Lenkiewicz AM, Babiec L, et al. Exogenous alpha-Synuclein evoked Parkin downregulation promotes mitochondrial dysfunction in neuronal cells. Implications for Parkinson’s disease pathology. Front Aging Neurosci. 2021;13:591475.
  • Marogianni C, Sokratous M, Dardiotis E, et al. Neurodegeneration and inflammation-an interesting interplay in Parkinson’s disease. IJMS. 2020;21(22):8421.
  • Prasuhn J, Davis RL, Kumar KR. Targeting mitochondrial impairment in Parkinson’s disease: challenges and opportunities. Front Cell Dev Biol. 2020;8:615461.
  • Hemmati-Dinarvand M, Saedi S, Valilo M, et al. Oxidative stress and Parkinson’s disease: conflict of oxidant-antioxidant systems. Neurosci Lett. 2019;709:134296.
  • Nguyen M, Wong YC, Ysselstein D, et al. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci. 2019;42(2):140–149.
  • Cerri S, Blandini F. Role of autophagy in Parkinson’s disease. Curr Med Chem. 2019;26(20):3702–3718.
  • Perinan MT, Gómez-Garre P, Blauwendraat C, International Parkinson’s Disease Genomics Consortium (IPDGC), et al. The role of RHOT1 and RHOT2 genetic variation on Parkinson disease risk and onset. Neurobiol Aging. 2021;97:144.e1–144.e3.
  • Elkouzi A, Vedam-Mai V, Eisinger RS, et al. Emerging therapies in Parkinson disease-repurposed drugs and new approaches. Nat Rev Neurol. 2019;15(4):204–223.
  • Tanmay T, Vatsal S. Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr Stem Cell Res Ther. 2014;9(6):513–521.
  • Susanne G, Jessica S, Patrick K, et al. Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phenotype. Stem Cells Dev. 2008;17(2):221–232.
  • Mammadova N, Summers CM, Kokemuller RD, et al. Accelerated accumulation of retinal α-synuclein (pSer129) and tau, neuroinflammation, and autophagic dysregulation in a seeded mouse model of Parkinson’s disease. Neurobiol Dis. 2019;121:1–16.
  • Parvez MK. Natural or plant products for the treatment of neurological disorders: current knowledge. Curr Drug Metab. 2018;19(5):424–428.
  • Oppedisano F, Maiuolo J, Gliozzi M, et al. The potential for natural antioxidant supplementation in the early stages of neurodegenerative disorders. IJMS. 2020;21(7):2618.
  • Singh SK, Srivastav S, Castellani RJ, et al. Neuroprotective and antioxidant effect of ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics. 2019;16(3):666–674.
  • Yang H, Li GP, Liu Q, et al. Neuroprotective effects of ginkgolide B in focal cerebral ischemia through selective activation of prostaglandin E2 receptor EP4 and the downstream transactivation of epidermal growth factor receptor. Phytother Res. 2021;35(5):2727–2744.
  • Li ZY, Chung YH, Shin EJ, et al. YY-1224, a terpene trilactone-strengthened ginkgo biloba, attenuates neurodegenerative changes induced by β-amyloid (1-42) or double transgenic overexpression of APP and PS1 via inhibition of cyclooxygenase-2. J Neuroinflammation. 2017;14(1):94.
  • Wu R, Shui L, Wang S, et al. Bilobalide alleviates depression-like behavior and cognitive deficit induced by chronic unpredictable mild stress in mice. Behav Pharmacol. 2016;27(7):596–605.
  • Ren C, Ji YQ, Liu H, et al. Effects of ginkgo biloba extract EGb761 on neural differentiation of stem cells offer new hope for neurological disease treatment. Neural Regen Res. 2019;14(7):1152–1157.
  • Cao A, Li X. Bilobalide protects H9c2 cell from oxygen-glucose-deprivation-caused damage through upregulation of miR-27a. Artif Cells Nanomed Biotechnol. 2019;47(1):2980–2988.
  • Krishnamoorthy A, Sevanan M, Mani S, et al. Chrysin restores MPTP induced neuroinflammation, oxidative stress and neurotrophic factors in an acute Parkinson’s disease mouse model. Neurosci Lett. 2019;709:134382.
  • Wang DX, Yang Y, Huang XS, et al. Pramipexole attenuates neuronal injury in Parkinson’s disease by targeting miR-96 to activate BNIP3-mediated mitophagy. Neurochem Int. 2021;146:104972.
  • Connell JW, Allison R, Reid E. Quantitative gait analysis using a motorized treadmill system sensitively detects motor abnormalities in mice expressing ATPase defective spastin. PLoS One. 2016;11(3):e0152413.
  • Joers V, Tansey MG, Mulas G, et al. Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol. 2017;155:57–75.
  • David S, Kroner S. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci. 2011;12(7):388–399.
  • Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun. 2012;26(8):1191–1201.
  • Ar Rochmah M, Harini IM, Septyaningtrias DE, et al. Centella asiatica prevents increase of hippocampal tumor necrosis factor-alpha independently of its effect on brain-derived neurotrophic factor in rat model of chronic stress. Biomed Res Int. 2019;2019:2649281.
  • Kramer ER, Liss B. GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett. 2015;589(24 Pt A):3760–3772.
  • Ferrini F, De Koninck Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast. 2013;2013:429815.
  • Hu E, Du H, Zhu X, et al. Beta-hydroxybutyrate promotes the expression of BDNF in hippocampal neurons under adequate glucose supply. Neuroscience. 2018;380:315–325.
  • Parkhurst CN, Yang G, Ninan I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155(7):1596–1609.
  • Rietdijk CD, van Weze RJA, Garssen J, et al. Neuronal toll-like receptors and neuro-immunity in Parkinson’s disease, alzheimer’s disease and stroke. NN. 2016;3(2):27–37.
  • Azam S, Jakaria M, Kim IS, et al. Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative ­diseases: focus on TLR4 signaling. Front Immunol. 2019;10:1000.
  • Filippov V, Kronenberg G, Pivneva T, et al. Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocyte. Mol Cell Neurosci. 2003;23(3):373–382.
  • Eliasson C, Sahlgren C, Berthold CH, et al. Intermediate filament protein partnership in astrocytes. J Biol Chem. 1999;274(34):23996–24006.
  • Zhu X, Zhou W, Jin H, et al. Brn2 alone is sufficient to convert astrocytes into neural progenitors and neurons. Stem Cells Dev. 2018;27(11):736–744.
  • Ma K, Deng X, Xia X, et al. Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons. Transl Neurodegener. 2018;7:29.
  • Le WD, Rowe DB, Jankovic J, et al. Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells. Arch Neurol. 1999;56(2):194–200.
  • He Y, Le WD, Appel SH. Role of fcgamma receptors in nigral cell injury induced by Parkinson disease immunoglobulin injection into mouse substantia nigra. Exp Neurol. 2002;176(2):322–327.
  • García-Domínguez I, Veselá K, García-Revilla J, et al. Peripheral inflammation enhances microglia response and nigral dopaminergic cell death in an in vivo MPTP model of Parkinson’s disease. Front Cell Neurosci. 2018;12(398):1–16.
  • Datta I, Ganapathy K, Razdan R, et al. Location and number of astrocytes determine dopaminergic neuron survival and function under 6-OHDA stress mediated through differential BDNF release. Mol Neurobiol. 2018;55(7):5505–5525.
  • Patel D, Jana A, Roy A, et al. Cinnamon and its metabolite protect the nigrostriatum in a mouse model of Parkinson’s disease via astrocytic GDNF. J Neuroimmune Pharmacol. 2019;14(3):503–518.
  • Huttunen HJ, Saarma M. CDNF protein therapy in Parkinson’s disease. Cell Transplant. 2019;28(4):349–366.
  • Howells DW, Porritt MJ, Wong JY, et al. Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol. 2000;166(1):127–135.
  • Zhang S, Chen S, Liu A, et al. Inhibition of BDNF production by MPP + through up-regulation of miR-210-3p contributes to dopaminergic neuron damage in MPTP model. Neurosci Lett. 2018;675:133–139.
  • Ben Haim L, Rowitch DH. Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci. 2017;18(1):31–41.
  • Michael LH, Abigail JR, Omar NA, et al. Expression of nestin by neural cells in the adult rat and human brain. PLoS One. 2011;6(4):e18535.
  • Doetsch F, Caillé I, Lim DA, et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97(6):703–716.
  • Rigoglio NN, Barreto RS, Favaron PO, et al. Central nervous system and vertebrae development in horses: a chronological study with differential temporal expression of nestin and GFAP. J Mol Neurosci. 2017;61(1):61–78.
  • Li H, Chen G. In vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cells. Neuron. 2016;91(4):728–738.
  • Moraga A, Pradillo JM, Cuartero MI, et al. Toll-like receptor 4 modulates cell migration and cortical neurogenesis after focal cerebral ischemia. Faseb J. 2014;28(11):4710–4718.
  • Zhao M, Zhou A, Xu L, et al. The role of TLR4-mediated PTEN/PI3K/AKT/NF-κB signaling pathway in neuroinflammation in hippocampal neurons. Neuroscience. 2014;269:93–101.
  • Rolls A, Shechter R, London A, et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol. 2007;9(9):1081–1088.
  • Nakano Y, Furube E, Morita S, et al. Astrocytic TLR4 expression and LPS-induced nuclear translocation of STAT3 in the sensory circumventricular organs of adult mouse brain. J Neuroimmunol. 2015;278:144–158.
  • Tang AH, Brunn GJ, Cascalho M, et al. Pivotal advance: endogenous pathway to SIRS, sepsis, and related conditions. J Leukoc Biol. 2007;82(2):282–285.
  • Kigerl KA, Lai W, Rivest S, et al. Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem. 2007;102(1):37–50.
  • Mariucci G, Pagiotti R, Galli F, et al. The potential role of toll-like receptor 4 in mediating dopaminergic cell loss and alpha-synuclein expression in the acute MPTP mouse model of Parkinson’s disease. J Mol Neurosci. 2018;64(4):611–618.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.