89
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Central dopaminergic, serotoninergic, as well as GABAergic systems mediate NMU-induced hypophagia in newborn chicken

, ORCID Icon, &
Pages 353-363 | Received 04 Mar 2022, Accepted 23 Jun 2022, Published online: 28 Jul 2022

References

  • Martinez VG, O’Driscoll L. Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin Chem. 2015;61(3):471–482.
  • Wan Y, Zhang J, Fang C, et al. Characterization of neuromedin U (NMU), neuromedin S (NMS) and their receptors (NMUR1, NMUR2) in chickens. Peptides. 2018;101:69–81.
  • Nakahara K, Maruyama K, Ensho T, et al. Neuromedin U suppresses prolactin secretion via dopamine neurons of the arcuate nucleus. Biochem Biophys Res Commun. 2020;521(2):521–526.
  • Nakashima Y, Ida T, Sato T, et al. Neuromedin U is necessary for normal gastrointestinal motility and is regulated by serotonin. Ann N Y Acad Sci. 2010;1200(1):104–111.
  • Lin T-Y, Wu F-J, Lee W-Y, et al. Ovarian regulation of neuromedin U and its local actions in the ovary, mediated through neuromedin U receptor 2. Am J Physiol Endocrinol Metab. 2013;304(8):E800–E809.
  • Ingallinella P, Peier AM, Pocai A, et al. PEGylation of neuromedin U yields a promising candidate for the treatment of obesity and diabetes. Bioorg Med Chem. 2012;20(15):4751–4759.
  • Honda K, Saneyasu T, Okuda M, et al. Glucagon and neuromedin U suppress food intake in broiler chicks. Jpn Poult Sci. 2015;52(4):268–273.
  • Vallöf D, Kalafateli AL, Jerlhag E. Brain region-specific neuromedin U signalling regulates alcohol-related behaviours and food intake in rodents. Addict Biol. 2020;25(3):e12764.
  • McCue DL, Kasper JM, Hommel JD. Regulation of motivation for food by neuromedin U in the paraventricular nucleus and the dorsal raphe nucleus. Int J Obes (Lond). 2017;41(1):120–128.
  • Zendehdel M, Ghashghayi E, Hassanpour S, et al. Interaction between opioidergic and dopaminergic systems on food intake in neonatal layer type chicken. Int J Pept Res Ther. 2016;22(1):83–92.
  • Kheyrkhah H, Soltani Zangbar H, Salimi O, et al. Prefrontal dopaminergic system and its role in working memory and cognition in spinal cord-injured rats. Exp Physiol. 2020;105(9):1579–1587.
  • McDougall SA, Rios JW, Apodaca MG, et al. Effects of dopamine and serotonin synthesis inhibitors on the ketamine-, d-amphetamine-, and cocaine-induced locomotor activity of preweanling and adolescent rats: sex differences. Behav Brain Res. 2020;379:112302.
  • Khodadadi M, Zendehdel M, Baghbanzadeh A, et al. Consequence of dopamine D2 receptor blockade on the hyperphagic effect induced by cannabinoid CB1 and CB2 receptors in layers. Br Poult Sci. 2017;58(5):585–593.
  • Romanova IV, Derkach KV, Mikhrina AL, et al. The leptin, dopamine and serotonin receptors in hypothalamic POMC-neurons of normal and obese rodents. Neurochem Res. 2018;43(4):821–837.
  • Vestlund J, Kalafateli AL, Studer E, et al. Neuromedin U induces self-grooming in socially-stimulated mice. Neuropharmacology. 2020;162:107818.
  • Rahmani B, Ghashghayi E, Zendehdel M, et al. The crosstalk between brain mediators regulating food intake behavior in birds: a review. Int J Pept Res Ther. 2021;27(4):2349–2322.
  • Zendehdel M, et al. The role of 5-HT2A and 5-HT2C receptors on harmalineinduced eating behavior in 24-h food-deprived broiler cockerels. Iran J Vet Res. 2013;14(2):94–99.
  • Saadoun A, Cabrera M. Hypophagic and dipsogenic effect of the 5-HT1A receptor agonist 8-OH-DPAT in broiler chickens. J Anim Physiol Anim Nutr (Berl). 2008;92(5):597–604.
  • Mortezaei SS, Zendehdel M, Babapour V, et al. The role of glutamatergic and GABAergic systems on serotonin-induced feeding behavior in chicken. Vet Res Commun. 2013;37(4):303–310.
  • Zendehdel M, Tirgari F, Shohre B, et al. Involvement of gaba and cannabinoid receptors in Central food intake regulation in neonatal layer chicks: role of CB1 and gabaa receptors. Rev Bras Cienc Avic. 2017;19(2):221–230.
  • Bungo T, Izumi T, Kawamura K, et al. Intracerebroventricular injection of muscimol, baclofen or nipecotic acid stimulates food intake in layer-type, but not meat-type, chicks. Brain Res. 2003;993(1-2):235–238.
  • Kasper JM, McCue DL, Milton AJ, et al. Gamma-aminobutyric acidergic projections from the dorsal raphe to the nucleus accumbens are regulated by neuromedin U. Biol Psychiatry. 2016;80(11):878–887.
  • Zendehdel M, Ebrahimi-Yeganeh A, Hassanpour S, et al. Interaction of the dopaminergic and nociceptin/orphanin FQ on Central feed intake regulation in chicken. Br Poult Sci. 2019;60(3):317–322.
  • Richards M, Proszkowiec-Weglarz M. Mechanisms regulating feed intake, energy expenditure, and body weight in poultry. Poult Sci. 2007;86(7):1478–1490.
  • Kuenzel WJ. Central neuroanatomical systems involved in the regulation of food intake in birds and mammals. J Nutr. 1994;124(8 Suppl):1355S–1370S.
  • Kuenzel WJ, Beck MM, Teruyama R. Neural sites and pathways regulating food intake in birds: a comparative analysis to mammalian systems. J Exp Zool. 1999;283(4-5):348–364.
  • Novoseletsky N, Nussinovitch A, Friedman-Einat M. Attenuation of food intake in chicks by an inverse agonist of cannabinoid receptor 1 administered by either injection or ingestion in hydrocolloid carriers. Gen Comp Endocrinol. 2011;170(3):522–527.
  • Zendehdel M, Hassanpour S. Central regulation of food intake in mammals and birds: a review. Neurotransmitter. 2014;(1):1–7.
  • Tachibana T, Tsutsui K. Neuropeptide control of feeding behavior in birds and its difference with mammals. Front Neurosci. 2016;10:485.
  • Richards M. Genetic regulation of feed intake and energy balance in poultry. Poult Sci. 2003;82(6):907–916.
  • Richards MP, Rosebrough RW, Coon CN, et al. Feed intake regulation for the female broiler breeder: in theory and in practice. J Appl Poult Res. 2010;19(2):182–193.
  • HO, JT, WDI, et al. A review of lighting programs for broiler production. Int J Poult Sci. 2006;5(4):301–308.
  • Davis JL, Masuoka DT, Gerbrandt LK, et al. Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiol Behav. 1979;22(4):693–695.
  • Furuse M, Matsumoto M, Saito N, et al. The Central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. Eur J Pharmacol. 1997;339(2-3):211–213.
  • van Tienhoven A, Juhasz L. The chicken telencephalon, diencephalon and mesencephalon in stereotaxic coordinates. J Comp Neurol. 1962;118(2):185–197.
  • Zendehdel M, Hasani K, Babapour V, et al. Dopamine-induced hypophagia is mediated by D1 and 5HT-2c receptors in chicken. Vet Res Commun. 2014;38(1):11–19.
  • Mahzouni M, Zendehdel M, Babapour V, et al. Methylamine induced hypophagia is mediated via dopamine D1 and D2 receptors in neonatal meat chicks. Vet Res Commun. 2016;40(1):21–27.
  • Lee W-H, Liu S-B, Shen J-H, et al. Identification and molecular cloning of a novel neuromedin U analog from the skin secretions of toad bombina maxima. Regul Pept. 2005;129(1-3):43–47.
  • Smith A, Kasper J, Thirteen A, et al. Binge-type eating in rats is facilitated by neuromedin U receptor 2 in the nucleus accumbens and ventral tegmental area. Nutrients. 2019;11(2):327.
  • Teranishi H, Hanada R. Neuromedin U, a key molecule in metabolic disorders. IJMS. 2021;22(8):4238.
  • Farrokhi R, et al. The role of dopaminergic and cannabinoidergic receptors on ghrelin-induced hypophagia in neonatal chicken. Arch Razi Inst. 2021;76(4):935–948.
  • Mirmohammadsadeghi Z, Shareghi Brojeni M, Haghparast A, et al. Role of paraventricular hypothalamic dopaminergic D1 receptors in food intake regulation of food-deprived rats. Eur J Pharmacol. 2018;818:43–49.
  • Vallöf D, Vestlund J, Engel JA, et al. The anorexigenic peptide neuromedin U (NMU) attenuates amphetamine-induced locomotor stimulation, accumbal dopamine release and expression of conditioned place preference in mice. PLoS One. 2016;11(5):e0154477.
  • Tanaka M, Telegdy G. Neurotransmissions of antidepressant-like effects of neuromedin U-23 in mice. Behav Brain Res. 2014;259:196–199.
  • Telegdy G, Adamik A. Anxiolytic action of neuromedin-U and neurotransmitters involved in mice. Regul Pept. 2013;186:137–140.
  • Zendehdel M, Mokhtarpouriani K, Babapour V, et al. The effect of serotonergic system on nociceptin/orphanin FQ induced food intake in chicken. J Physiol Sci. 2013;63(4):271–277.
  • Howell E, Baumgartner H, Zallar L, et al. Glucagon-like peptide-1 (GLP-1) and 5-hydroxytryptamine 2c (5-HT2c) receptor agonists in the ventral tegmental area (VTA) inhibit ghrelin-stimulated appetitive reward. IJMS. 2019;20(4):889.
  • Kamatchi GL, Rathanaswami P. Inhibition of deprivation-induced food intake by GABAA antagonists: roles of the hypothalamic, endocrine and alimentary mechanisms. J Clin Biochem Nutr. 2012;51(1):19–85.
  • Sasaki-Hamada S, Maeno Y, Yabe M, et al. Neuromedin U modulates neuronal excitability in rat hippocampal slices. Neuropeptides. 2021;89:102168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.