353
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

The role of voltage-gated calcium channels in the pathogenesis of Parkinson’s disease

, , , , , , & show all
Pages 452-461 | Received 02 Dec 2021, Accepted 29 Jul 2022, Published online: 07 Nov 2022

References

  • Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models, and treatments. Trends Neurosci. 2007;30(7):357–364.
  • Galvan A, Wichmann T. Pathophysiology of Parkinsonism. Clin Neurophysiol. 2008;119(7):1459–1474.
  • Bezard E, Imbert C, Gross CE. Experimental models of Parkinson’s disease: from the static to the dynamic. Rev Neurosci. 1998;9(2):71–90.
  • Schapira A, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18(7):435–450.
  • Muangpaisan W, Hori H, Brayne C. Systematic review of the prevalence and incidence of Parkinson’s disease in asia. J Epidemiol. 2009;19(6):281–293.
  • Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med. 2013;62:132–144.
  • Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912.
  • Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.
  • Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol. 2013;22(1):11–17.
  • Maegawa H, Morimoto Y, Kudo C, et al. Neural mechanism underlying hyperalgesic response to orofacial pain in Parkinson’s disease model rats. Neurosci Res. 2015;96:59–68.
  • Burré J, Sharma M, Tsetsenis T, et al. α-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329(5999):1663–1667.
  • Almandoz-Gil L, Persson E, Lindström V, et al. In situ proximity ligation assay reveals co-localization of α-synuclein and SNARE proteins in murine primary neurons. Front Neurol. 2018;9:180.
  • Yoo G, Yeou S, Son JB, et al. Cooperative inhibition of SNARE-mediated vesicle fusion by α-synuclein monomers and oligomers. Sci Rep. 2021;11(1):10955.
  • Noyce AJ, Bestwick JP, Silveira-Moriyama L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol. 2012;72(6):893–901.
  • Gerfen CR, Engber TM, Mahan LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250(4986):1429–1432.
  • Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3(8):a003947.
  • Zamponi GW, Striessnig J, Koschak A, et al. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67(4):821–870.
  • Arikkath J, Campbell KP. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol. 2003;13(3):298–307.
  • Felix R. Molecular regulation of voltage-gated Ca2+ channels. J Recept Signal Transduct Res. 2005;25(2):57–71.
  • Campiglio M, Flucher BE. The role of auxiliary subunits for the functional diversity of voltage-gated calcium channels. J Cell Physiol. 2015;230(9):2019–2031.
  • Dolphin AC. Calcium channel diversity: multiple roles of calcium channel subunits. Curr Opin Neurobiol. 2009;19(3):237–244.
  • Pragnell M, De Waard M, Mori Y, et al. Calcium channel β-subunit binds to a conserved motif in the I-II cytoplasmic linker of the α1-subunit. Nature. 1994;368(6466):67–70.
  • Buraei Z, Yang J. The ß subunit of voltage-gated Ca2+ channels. Physiol Rev. 2010;90(4):1461–1506.
  • Buraei Z, Yang J. Structure and function of the β subunit of voltage-gated Ca2+ channels. Biochim Biophys Acta. 2013; Jul1828(7):1530–1540.
  • Weiss N, Zamponi GW. Trafficking of neuronal calcium channels. Neuronal Signal. 2017;1(1):NS20160003.
  • Calderón-Rivera A, Andrade A, Hernández-Hernández O, et al. Identification of a disulfide bridge essential for structure and function of the voltage-gated Ca2+ ­channel α2δ-1 auxiliary subunit. Cell Calcium. 2012;51(1):22–30.
  • Davies A, Kadurin I, Alvarez-Laviada A, et al. The α2δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc Natl Acad Sci U S A. 2010;107(4):1654–1659.
  • Andrade A, Sandoval A, González-Ramírez R, et al. The α2δ subunit augments functional expression and modifies the pharmacology of CaV1.3 L-type channels. Cell Calcium. 2009;46(4):282–292.
  • Simms BA, Zamponi GW. Trafficking and stability of voltage-gated calcium channels. Cell Mol Life Sci. 2012;69(6):843–856.
  • Felix R, Weiss N. Ubiquitination and proteasome-mediated degradation of voltage-gated Ca2+ channels and potential pathophysiological implications. Gen Physiol Biophys. 2017;36(1):1–5.
  • Lipscombe D, Helton TD, Xu W. L-type calcium channels: the low down. J Neurophysiol. 2004;92(5):2633–2641.
  • Ackermann F, Waites CL, Garner CC. Presynaptic active zones in invertebrates and vertebrates. EMBO Rep. 2015;16(8):923–938.
  • Gandini MA, Felix R. Molecular and functional interplay of voltage-gated Ca2+ channels with the cytoskeleton. Curr Mol Pharmacol. 2015;8(1):69–80.
  • Schneggenburger R, Han Y, Kochubey O. Ca2+ channels and transmitter release at the active zone. Cell Calcium. 2012;52(3-4):199–207.
  • Atlas D. The voltage-gated calcium channel functions as the molecular switch of synaptic transmission. Annu Rev Biochem. 2013;82:607–635.
  • Mochida S. Presynaptic calcium channels. Neurosci Res. 2018;127:33–44.
  • Berger SM, Bartsch D. The role of L-type voltage-gated calcium channels CaV1.2 and Cav1.3 in normal and pathological brain function. Cell Tissue Res. 2014;357(2):463–476.
  • Liss B, Striessnig J. The potential of L-type calcium channels as a drug target for neuroprotective therapy in Parkinson’s disease. Annu Rev Pharmacol Toxicol. 2019;59:263–289.
  • Chan CS, Guzman JN, Ilijic E, et al. Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature. 2007;447(7148):1081–1086.
  • Ilijic E, Guzman JN, Surmeier DJ. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol Dis. 2011;43(2):364–371.
  • Meredith GE, Totterdell S, Potashkin JA, et al. Modeling PD pathogenesis in mice: advantages of a chronic MPTP protocol. Parkinsonism Relat Disord. 2008;14 Suppl 2(2):S112–S115.
  • Mercuri NB, Bonci A, Calabresi P, et al. Effects of ­dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones. Br J Pharmacol. 1994;113(3):831–838.
  • Nedergaard S, Flatman JA, Engberg I. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol. 1993;466:727–747.
  • Puopolo M, Raviola E, Bean BP. Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci. 2007; Jan 1727(3):645–656.
  • Putzier I, Kullmann PH, Horn JP, et al. CaV1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci. 2009;29(49):15414–15419.
  • Guzman JN, Sanchez-Padilla J, Chan CS, et al. Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci. 2009;29(35):11011–11019.
  • Dryanovski DI, Guzman JN, Xie Z, et al. Calcium entry and α-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci. 2013;33(24):10154–10164.
  • Leandrou E, Emmanouilidou E, Vekrellis K. Voltage-gated calcium channels and α-synuclein: implications in Parkinson’s disease. Front Mol Neurosci. 2019;12:237.
  • Nath S, Goodwin J, Engelborghs Y, et al. Raised calcium promotes α-synuclein aggregate formation. Mol Cell Neurosci. 2011;46(2):516–526.
  • Cataldi M. The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol. 2013;11(3):276–297.
  • Segura-Chama P, Rivera-Cerecedo CV, González-Ramírez R, et al. Atypical Ca2+ currents in chromaffin cells from SHR and WKY rat strains result from the deficient expression of a splice variant of the α1D Ca2+ channel. Am J Physiol Heart Circ Physiol. 2012;302(2):H467–H478.
  • Hurley MJ, Brandon B, Gentleman SM, et al. Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain. 2013;136(Pt 7):2077–2097.
  • Lieberman OJ, Choi SJ, Kanter E, et al. α-Synuclein-dependent calcium entry underlies differential sensitivity of cultured SN and VTA dopaminergic neurons to a Parkinsonian neurotoxin. eNeuro. 2017;4(6):ENEURO.0167-17.2017.
  • Lautenschläger J, Stephens AD, Fusco G, et al. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nat Commun. 2018;9(1):712.
  • Surmeier DJ, Schumacker PT, Guzman JD, et al. Calcium and Parkinson’s disease. Biochem Biophys Res Commun. 2017;483(4):1013–1019.
  • Mosharov EV, Larsen KE, Kanter E, et al. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron. 2009;62(2):218–229.
  • Morikawa H, Paladini CA. Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience. 2011;198:95–111.
  • Koschak A, Reimer D, Huber I, et al. 1D (CaV1.3) subunits can form L-type Ca2+ channels activating at negative voltages. J Biol Chem. 2001;276(25):22100–22106. α
  • Singh A, Gebhart M, Fritsch R, et al. Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain. J Biol Chem. 2008;283(30):20733–20744.
  • Bock G, Gebhart M, Scharinger A, et al. Functional properties of a newly identified C-terminal splice variant of CaV1.3 L-type Ca2+ channels. J Biol Chem. 2011;286(49):42736–42748.
  • Boyman L, Karbowski M, Lederer WJ. Regulation of mitochondrial ATP production: ca2+ signaling and quality control. Trends Mol Med. 2020; Jan26(1):21–39.
  • Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev. 2000; Jan80(1):315–360.
  • Murali Mahadevan H, Hashemiaghdam A, Ashrafi G, et al. Mitochondria in neuronal health: from energy metabolism to Parkinson’s disease. Adv Biol (Weinh). 2021;5(9):e2100663.
  • Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron. 2022;110(12):1899–1923.
  • Chung SY, Kishinevsky S, Mazzulli JR, et al. Parkin and PINK1 patient iPSC-derived midbrain dopamine neurons exhibit mitochondrial dysfunction and α-synuclein accumulation. Stem Cell Rep. 2016;7(4):664–677.
  • Scarffe LA, Stevens DA, Dawson VL, et al. Parkin and PINK1: much more than mitophagy. Trends Neurosci. 2014;37(6):315–324.
  • Tabata Y, Imaizumi Y, Sugawara M, et al. T-type calcium channels determine the vulnerability of dopaminergic neurons to mitochondrial stress in familial Parkinson disease. Stem Cell Reports. 2018;11(5):1171–1184.
  • Poetschke C, Dragicevic E, Duda J, et al. Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of substantia nigra dopamine neurons from CaV1.3 L-type Ca2+ channel KO mice. Sci Rep. 2015;5:13688.
  • Boag MK, Ma L, Mellick GD, et al. Calcium channels and iron metabolism: a redox catastrophe in Parkinson’s disease and an innovative path to novel therapies? Redox Biol. 2021;47:102136.
  • Ma L, Gholam Azad M, Dharmasivam M, et al. Parkinson’s disease: alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol. 2021;41:101896.
  • Aguirre P, Mena NP, Carrasco CM, et al. Iron chelators and antioxidants regenerate neuritic tree and nigrostriatal fibers of MPP+/MPTP-lesioned dopaminergic neurons. PLoS One. 2015;10(12):e0144848.
  • Lu Y, Prudent M, Fauvet B, et al. Phosphorylation of α-Synuclein at Y125 and S129 alters its metal binding properties: implications for understanding the role of α-synuclein in the pathogenesis of Parkinson’s disease and related disorders. ACS Chem Neurosci. 2011;2(11):667–675.
  • Jiang H, Song N, Jiao Q, et al. Iron pathophysiology in Parkinson diseases. Adv Exp Med Biol. 2019;1173:45–66.
  • Ortner NJ. Voltage-gated Ca2+ channels in dopaminergic substantia nigra neurons: therapeutic targets for neuroprotection in Parkinson’s disease? Front Synaptic Neurosci. 2021;13:636103.
  • Verma A, Ravindranath V. CaV1.3 L-Type calcium channels increase the vulnerability of substantia nigra dopaminergic neurons in MPTP mouse model of Parkinson’s disease. Front Aging Neurosci. 2019;11:382.
  • Ebanks B, Chakrabarti L. Mitochondrial ATP synthase is a target of oxidative stress in neurodegenerative diseases. Front Mol Biosci. 2022;9:854321.
  • Gaasch JA, Geldenhuys WJ, Lockman PR, et al. Van der schyf CJ. Voltage-gated calcium channels provide an alternate route for iron uptake in neuronal cell cultures. Neurochem Res. 2007;32(10):1686–1693.
  • Bostanci MÖ, Bagirici F. Blocking of L-type calcium channels protects hippocampal and nigral neurons against iron neurotoxicity. The role of L-type calcium channels in iron-induced neurotoxicity. Int J Neurosci. 2013;123(12):876–882.
  • Xu YY, Wan WP, Zhao S, et al. L-type calcium channels are involved in iron-induced neurotoxicity in primary cultured ventral mesencephalon neurons of rats. Neurosci Bull. 2020;36(2):165–173.
  • Soldatov NM. Molecular determinants of CaV1.2 calcium channel inactivation. ISRN Mol Biol. 2012; Oct 172012:691341.
  • Altier C, Garcia-Caballero A, Simms B, et al. The CaVβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci. 2011;14(2):173–180.
  • Gregory FD, Bryan KE, Pangršič T, et al. Harmonin inhibits presynaptic CaV1.3 Ca2+ channels in mouse inner hair cells. Nat Neurosci. 2011;14(9):1109–1111.
  • Marangoudakis S, Andrade A, Helton TD, et al. Differential ubiquitination and proteasome regulation of CaV2.2 N-type channel splice isoforms. J Neurosci. 2012;32(30):10365–10369.
  • Gandini MA, Henríquez DR, Grimaldo L, et al. CaV2.2 channel cell surface expression is regulated by the light chain 1 (LC1) of the microtubule-associated protein B (MAP1B) via UBE2L3-mediated ubiquitination and degradation. Pflugers Arch. 2014;466(11):2113–2126.
  • Gandini MA, Sandoval A, Zamponi GW, et al. The MAP1B-LC1/UBE2L3 complex catalyzes degradation of cell surface CaV2.2 channels. Channels (Austin). 2014;8(5):452–457.
  • Chaugule VK, Burchell L, Barber KR, et al. Autoregulation of parkin activity through its ubiquitin-like domain. Embo J. 2011;30(14):2853–2867.
  • Wenzel DM, Lissounov A, Brzovic PS, et al. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature. 2011;474(7349):105–108.
  • Grimaldo L, Sandoval A, Garza-López E, et al. Involvement of Parkin in the ubiquitin proteasome system-mediated degradation of N-type voltage-gated Ca2+ channels. PLoS One. 2017;12(9):e0185289.
  • Forloni G, Terreni L, Bertani I, et al. Protein misfolding in Alzheimer’s and Parkinson’s disease: genetics and molecular mechanisms. Neurobiol Aging. 2002;23(5):957–976.
  • Lizama BN, Palubinsky AM, McLaughlin B. Alterations in the E3 ligases Parkin and CHIP result in unique metabolic signaling defects and mitochondrial quality control issues. Neurochem Int. 2018;117:139–155.
  • Kanner SA, Morgenstern T, Colecraft HM. Sculpting ion channel functional expression with engineered ubiquitin ligases. Elife. 2017;6:e29744.
  • Swart T, Hurley MJ. Calcium channel antagonists as disease-modifying therapy for Parkinson’s disease: therapeutic rationale and current status. CNS Drugs. 2016;30(12):1127–1135.
  • Daniel NH, Aravind A, Thakur P. Are ion channels potential therapeutic targets for Parkinson’s disease? Neurotoxicology. 2021;87:243–257.
  • Becker C, Jick SS, Meier CR. Use of antihypertensives and the risk of Parkinson disease. Neurology. 2008;70(16 Pt 2):1438–1444.
  • Ritz B, Rhodes SL, Qian L, et al. Type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol. 2010;67(5):600–606.
  • Lee YC, Lin CH, Wu RM, et al. Anti- hypertensive agents and risk of Parkinson’s disease: a nationwide cohort study. PLoS One. 2014;9(6):e98961.
  • Pasternak B, Svanström H, Nielsen NM, et al. Use of calcium channel blockers and Parkinson’s disease. Am J Epidemiol. 2012;175(7):627–635.
  • Kang S, Cooper G, Dunne SF, et al. Structure-activity relationship of N,N’-disubstituted pyrimidinetriones as CaV1.3 calcium channel-selective antagonists for Parkinson’s disease. J Med Chem. 2013;56(11):4786–4797.
  • Kang S, Cooper G, Dunne SF, et al. CaV1.3-selective L-type calcium channel antagonists as potential new therapeutics for Parkinson’s disease. Nat Commun. 2012;3:1146.
  • Lanzetti S, Di Biase V. Small molecules as modulators of voltage-gated calcium channels in neurological disorders: state of the art and perspectives. Molecules (Basel, Switzerland. ). 2022;27(4):1312.
  • Evans RC, Zhu M, Khaliq ZM. Dopamine inhibition differentially controls excitability of substantia nigra dopamine neuron subpopulations through T-Type calcium channels. J Neurosci. 2017;37(13):3704–3720.
  • Ortner NJ, Bock G, Dougalis A, et al. Lower affinity of isradipine for L-Type Ca2+ channels during substantia nigra dopamine neuron-like activity: implications for neuroprotection in Parkinson’s disease. J Neurosci. 2017;37(28):6761–6777.
  • Murata M, Odawara T, Hasegawa K, et al. Effect of zonisamide on Parkinsonism in patients with dementia with lewy bodies: a phase 3 randomized clinical trial. Parkinsonism Relat Disord. 2020;76:91–97.
  • Hossain MM, Weig B, Reuhl K, et al. The anti-Parkinsonian drug zonisamide reduces neuroinflammation: role of microglial NaV1.6. Exp Neurol. 2018;308:111–119.
  • Sano H, Murata M, Nambu A. Zonisamide reduces nigrostriatal dopaminergic neurodegeneration in a mouse genetic model of Parkinson’s disease. J Neurochem. 2015;134(2):371–381.
  • Uemura MT, Asano T, Hikawa R, et al. Zonisamide inhibits monoamine oxidase and enhances motor performance and social activity. Neurosci Res. 2017;124:25–32.
  • Wang X, Saegusa H, Huntula S, et al. Blockade of microglial CaV1.2 Ca2+ channel exacerbates the symptoms in a Parkinson’s disease model. Sci Rep. 2019;9(1):9138.
  • Momtaz S, Memariani Z, El-Senduny FF, et al. Targeting ubiquitin-proteasome pathway by natural products: novel therapeutic strategy for treatment of neurodegenerative diseases. Front Physiol. 2020;11:361.
  • Braithwaite SP, Voronkov M, Stock JB, et al. Targeting phosphatases as the next generation of disease modifying therapeutics for Parkinson’s disease. Neurochem Int. 2012;61(6):899–906.
  • Martin-Bastida A, Ward RJ, Newbould R, et al. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci Rep. 2017;7(1):1398.
  • Ronzitti G, Bucci G, Emanuele M, et al. Exogenous α-synuclein decreases raft partitioning of Cav2.2 channels inducing dopamine release. J Neurosci. 2014;34(32):10603–10615.
  • Benkert J, Hess S, Roy S, et al. CaV2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson’s disease. Nat Commun. 2019;10(1):5094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.