146
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Effect of an herbal formulation containing Peganum harmala L. and Fraxinus excelsior L. on oxidative stress, memory impairment and withdrawal syndrome induced by morphine

, ORCID Icon, , ORCID Icon, , , , & show all
Pages 570-583 | Received 03 Jan 2022, Accepted 15 Sep 2022, Published online: 10 Oct 2022

References

  • Wang S. Historical review: opiate addiction and opioid receptors. Cell Transplant. 2019;28(3):233–238.
  • Zeng X-S, Geng W-S, Wang Z-Q, et al. Morphine addiction and oxidative stress: the potential effects of thioredoxin-1. Front Pharmacol. 2020;11:82–82.
  • Shoda T, Fukuda K, Uga H, et al. Activation of mu-opioid receptor induces expression of c-fos and junB via mitogen-activated protein kinase Cascade. Anesthesiology. 2001;95(4):983–989.
  • Abdel-Zaher AO, Mostafa MG, Farghly HM, et al. Inhibition of brain oxidative stress and inducible nitric oxide synthase expression by thymoquinone attenuates the development of morphine tolerance and dependence in mice. Eur J Pharmacol. 2013;702(1–3):62–70.
  • Aricioglu F, Paul IA, Regunathan S. Agmatine reduces only peripheral-related behavioral signs, not the Central signs, of morphine withdrawal in nNOS deficient transgenic mice. Neurosci Lett. 2004;354(2):153–157.
  • Osmanlıoğlu H, Yıldırım MK, Akyuva Y, et al. Morphine induces apoptosis, inflammation, and mitochondrial oxidative stress via activation of TRPM2 channel and nitric oxide signaling pathways in the hippocampus. Mol Neurobiol. 2020;57(8):3376–3389.
  • Han H, Dong Z, Jia Y, et al. Opioid addiction and withdrawal differentially drive long-term depression of inhibitory synaptic transmission in the hippocampus. Sci Rep. 2015;5(1):9666.
  • Ranjbar K, Zarrinkalam E, Asl SS, et al. The effect of different exercise training modes on dentate gyrus neurodegeneration and synaptic plasticity in morphine-dependent rats. Neurochem Int. 2022 May;155:105304. doi: 10.1016/j.neuint.2022.105304. Epub 2022 Feb 14. PMID: 35176438
  • Kraeuter AK, Guest PC, Sarnyai Z. The Y-Maze for assessment of spatial working and reference memory in mice. Methods Mol Biol. 2019;1916:105–111.
  • Hodgson SR, Hofford RS, Norris CJ, et al. Increased elevated plus maze open-arm time in mice during naloxone-precipitated morphine withdrawal. Behav Pharmacol. 2008;19(8):805–811.
  • Komada M, Takao K, Miyakawa T. Elevated plus maze for mice. J Vis Exp. 2008;22:1–4.
  • Gao J-L, Tu S-A, Liu J, et al. An-jun-ning, a traditional herbal formula, attenuates spontaneous withdrawal symptoms via modulation of the dopamine system in morphine-dependent rats. BMC Complement Altern Med. 2014;14(1):308–308.
  • Barani M, Sangiovanni E, Angarano M, et al. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. Int J Nanomedi. 2021;16:6983–7022. doi:10.2147/IJN.S318416.
  • Kamali M, Tajadini H, Mehrabani M, et al. Consequences of opioid abuse and their treatments in Persian medicine: a review study. Addict Health. 2020;12(1):46–57.
  • Moosavyzadeh A, Ghaffari F, Mosavat SH, et al. The medieval Persian manuscript of afyunieh: the first individual treatise on the opium and addiction in history. J Integr Med. 2018;16(2):77–83.
  • Shirazi IMM. Resaleh afyunieh. Tehran: Traditional Iranian Medicine Publications; 2011.
  • Kermani MK. Daqaiq al-Alaj. Kerman: Saadat Press; 1983.
  • Branch S. Etymological review on chemical and pharmaceutical substances of the Oriental origin. Int J Anim Veter Adv. 2012;4:40–44.
  • Moloudizargari M, Mikaili P, Aghajanshakeri S, et al. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn Rev. 2013;7(14):199–212.
  • Farouk L, Laroubi A, Aboufatima R, et al. Evaluation of the analgesic effect of alkaloid extract of Peganum harmala L.: possible mechanisms involved. J Ethnopharmacol. 2008;115(3):449–454.
  • Monsef HR, Ghobadi A, Iranshahi M, et al. Antinociceptive effects of Peganum harmala L. alkaloid extract on mouse formalin test. J Pharm Pharm Sci. 2004;7(1):65–69.
  • Tabatabai SM, Dashti S, Doosti F, et al. Phytotherapy of opioid dependence and withdrawal syndrome: a review. Phytother Res. 2014;28(6):811–830.
  • Boisvert C, Aucante P. Plantes et remèdes naturels:[200 plantes médicinales et usuelles, 500 recettes gourmandes, soins de beauté, conseils de santé]. Aubanel; 2003.
  • Visen P, Saraswat B, Visen A, et al. Acute effects of Fraxinus excelsior L. seed extract on postprandial glycemia and insulin secretion on healthy volunteers. J Ethnopharmacol. 2009;126(2):226–232.
  • Middleton P, Stewart F, Al-Qahtani S, et al. Antioxidant, antibacterial activities and general toxicity of Alnus glutinosa, Fraxinus excelsior and Papaver rhoeas. Iran J Pharm Res. 2010;4(2):81–86. doi:10.22037/ijpr.2010.620
  • Sardari S, Shokrgozar MA, Ghavami G. Cheminformatics based selection and cytotoxic effects of herbal extracts. Toxicol In Vitro. 2009;23(7):1412–1421.
  • Kruedener V, Schneider S, Elstner W. E. Effects of extracts from Populus tremula L., Solidago virgaurea L. and Fraxinus excelsior L. on various myeloperoxidase systems. Arzneimittelforschung. 1996;46(8):809–814.
  • Taracha E, Lehner M, Wisłowska-Stanek A, et al. Effects of methadone and morphine on c-Fos expression in the rat brain: similarities and differences. Pharmacol Rep. 2006;58(1):120–124.
  • Louhimies S. Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes. Altern Lab Anim. 2002;30(2_suppl):217–219.
  • Herborne J. Phytochemical methods. A guide to modern techniques of plant analysis. 1973;2:5–11.
  • Dinakaran SK, Chelle S, Avasarala H. Profiling and determination of phenolic compounds in poly herbal formulations and their comparative evaluation. J Tradit Complement Med. 2019;9(4):319–327.
  • Fatemi I, Amirteimoury M, Shamsizadeh A, et al. The ­effect of metformin on morphine analgesic tolerance and dependence in rats. Res Pharma Sci. 2018;13(4):316–323.
  • Aghili Khorasani MH. Qarabadin-e-Kabir. Tehran: Iran University of Medical Sciences; 1970. [In Persian].
  • IbnMas’ud Shirazi I. Resalehe afyunieh. Tehran: Traditional Iranian Medicine Press; 2011. [In Persian].
  • Rahmati B, Beik A. Prevention of morphine dependence and tolerance by Nepeta menthoides was accompanied by attenuation of nitric oxide overproduction in male mice. J Ethnopharmacol. 2017;199:39–51.
  • Lee SY, Song DK, Jang CG. Effects of Coptis japonica on morphine-induced conditioned place preference in mice. Arch Pharm Res. 2003;26(7):540–544.
  • Tzschentke TM. Review on CPP: measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol. 2007;12(3–4):227–462.
  • Wu G, Xu X, Ye F, et al. Effects of processed aconiti tuber on the extinction and reinstatement of morphine-induced conditioned place preference in rats. J Ethnopharmacol. 2021;267:113524.
  • Hakimizadeh E, Zamanian MY, Borisov VV, et al. Gemfibrozil, a lipid-lowering drug, reduces anxiety, enhances memory, and improves brain oxidative stress in d-galactose-induced aging mice. Fundam Clin Pharmacol. 2022;36(3):501–508.
  • Zakeri M, Fatemi I, Kaeidi A, et al. Pro-neurocognitive and anti-sarcopenic benefits of one-year metformin therapy in ovariectomized aged mice. Clin Exp Pharmacol Physiol. 2019;46(12):1133–1140.
  • Foyet HS, Tchinda Deffo S, Koagne Yewo P, et al. Ficus sycomorus extract reversed behavioral impairment and brain oxidative stress induced by unpredictable chronic mild stress in rats. BMC Complement Altern Med. 2017;17(1):502.
  • Hakimizadeh E, Oryan S, Hajizadeh Moghaddam A, et al. Endocannabinoid system and TRPV1 receptors in the dorsal hippocampus of the rats modulate anxiety-like behaviors. Iran J Basic Med Sci. 2012;15(3):795–802.
  • Fatemi I, Khaluoi A, Kaeidi A, et al. Protective effect of metformin on D-galactose-induced aging model in mice. Iran J Basic Med Sci. 2018;21(1):19–25.
  • du Jardin KG, Jensen JB, Sanchez C, et al. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism. Eur Neuropsychopharmacol. 2014;24(1):160–171.
  • Juybari KB, Ebrahimi G, Moghaddam MAM, et al. Evaluation of serum arsenic and its effects on antioxidant alterations in relapsing-remitting multiple sclerosis patients. Mult Scler Relat Disord. 2018;19:79–84.
  • Karimi A, Bahrampour K, Moghaddam MAM, et al. Evaluation of lithium serum level in multiple sclerosis patients: a neuroprotective element. Mult Scler Relat Disord. 2017;17:244–248.
  • Huston JP, de Souza Silva MA, Topic B, et al. What’s conditioned in conditioned place preference?. Trend Pharma Sci. 2013;34(3):162–166.
  • Prus AJ, James JR, Rosecrans JA. Conditioned place preference. In: Methods of behavior analysis in neuroscience. 2nd ed. CRC Press/Taylor & Francis; 2009.
  • Zarindast M, Rezayof A. Morphine-induced place preference: interactions with neurotransmitter systems. Iran J Pharm Res. 2007;6(1):3–15.
  • Cai M, Su Z, Zou H, et al. Association between the traditional Chinese medicine pathological factors of opioid addiction and DRD2/ANKK1 TaqIA polymorphisms. BMC Complement Altern Med. 2015;15(1):209.
  • Herraiz T, González D, Ancín-Azpilicueta C, et al. β-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem Toxicol. 2010;48(3):839–845.
  • Tam SY, Roth RH. Selective increase in dopamine metabolism in the prefrontal cortex by the anxiogenic beta-carboline FG 7142. Biochem Pharmacol. 1985;34(9):1595–1598.
  • Farzin D, Haghparast A, Motaman S, et al. Effects of harmane and other β-carbolines on apomorphine-induced licking behavior in rat. Pharmacol Biochem Behav. 2011;98(2):215–219.
  • Drucker G, Raikoff K, Neafsey E, et al. Dopamine uptake inhibitory capacities of β-carboline and 3, 4-dihydro-β-carboline analogs of N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) oxidation products. Brain Res. 1990;509(1):125–133.
  • Polanski W, Reichmann H, Gille G. Stimulation, protection and regeneration of dopaminergic neurons by 9-methyl-β-carboline: a new anti-Parkinson drug? Expert Rev Neurother. 2011;11(6):845–860.
  • Baum SS, Hill R, Rommelspacher H. Norharman-induced changes of extracellular concentrations of dopamine in the nucleus accumbens of rats. Life Sci. 1995;56(20):1715–1720.
  • Ergene E, Schoener EP. Effects of harmane (1-methyl-β-carboline) on neurons in the nucleus accumbens of the rat. Pharmacol Biochem Behav. 1993;44(4):951–957.
  • Pereira EC, Lucetti DL, Barbosa-Filho JM, et al. Coumarin effects on amino acid levels in mice prefrontal cortex and hippocampus. Neurosci Lett. 2009;454(2):139–142.
  • Murai T, Yoshida Y, Koide S, et al. Clonidine reduces dopamine and increases GABA in the nucleus accumbens: an in vivo microdialysis study. Pharmacol Biochem Behav. 1998;60(3):695–701.
  • Chen HH, Chiang YC, Yuan ZF, et al. Buprenorphine, methadone, and morphine treatment during pregnancy: behavioral effects on the offspring in rats. Neuropsychiatr Dis Treat. 2015;11:609–618.
  • Sala M, Braida D, Leone MP, et al. Chronic morphine affects working memory during treatment and withdrawal in rats: possible residual long-term impairment. Behav Pharmacol. 1994;5(6):570–580.
  • Shibani F, Sahamsizadeh A, Fatemi I, et al. Effect of oleuropein on morphine-induced hippocampus neurotoxicity and memory impairments in rats. Naunyn Schmiedebergs Arch Pharmacol. 2019;392(11):1383–1391.
  • Ebrahimi-Ghiri M, Nasehi M, Zarrindast M-R. Anxiolytic and antidepressant effects of ACPA and harmaline co-treatment. Behav Brain Res. 2019;364:296–302.
  • dos Santos RG, Osório FL, Crippa JAS, et al. Antidepressive and anxiolytic effects of ayahuasca: a systematic literature review of animal and human studies. Braz J Psychiatry. 2016;38(1):65–72.
  • Monsef-Esfahani HR, Amini M, Goodarzi N, et al. Coumarin compounds of Biebersteinia multifida roots show potential anxiolytic effects in mice. Daru. 2013;21(1):51.
  • Charmchi Z, Esmaeili M, Heidari B. Low and high doses of Norharmane respectively improve and impair learning and memory in Streptozotocin-Induced rat model of sporadic Alzheimer’s disease. Paper presented at: Annals of Neurology; 2017.
  • Shi Z, Pan S, Wang L, et al. Oleanolic acid attenuates morphine withdrawal symptoms in rodents: association with regulation of dopamine function. Drug Des Devel Ther. 2021;15:3685–3696.
  • Miralles A, Esteban S, Sastre-Coll A, et al. High-affinity binding of β-carbolines to imidazoline I2B receptors and MAO-A in rat tissues: norharman blocks the effect of morphine withdrawal on DOPA/noradrenaline synthesis in the brain. Eur J Pharmacol. 2005;518(2–3):234–242.
  • Farouk L, Laroubi A, Ouachrif A, et al. Antinociceptive activity of various extracts of Peganum harmala L. and possible mechanism of action. Iran J Pharmacol Ther. 2009;8(1):29–35.
  • Tosun A, Akkol EK, Yeşilada E. Anti-inflammatory and antinociceptive activity of coumarins from seseli gummiferum subsp. corymbosum (apiaceae). Z Naturforsch C J Biosci. 2009;64(1–2):56–62.
  • Park SH, Sim YB, Kang YJ, et al. Antinociceptive profiles and mechanisms of orally administered coumarin in mice. Biol Pharm Bull. 2013;36(6):925–930.
  • Abolhasani L, Salehi EA, Kenari RE. Study of antioxidant capacity and stability of phenolic compounds from the seeds of Peganum harmala. J Appl Environ Biol Sci. 2015;4(11):218–222.
  • Berrougui H, Isabelle M, Cloutier M, et al. Protective effects of Peganum harmala L. extract, harmine and harmaline against human low-density lipoprotein oxidation. J Pharm Pharmacol. 2006;58(7):967–974.
  • Chen Q, Yang L, Zhang G, et al. Bioactivity-guided isolation of antiosteoporotic compounds from Ligustrum lucidum. Phytother Res. 2013;27(7):973–979.
  • Meyer B, Schneider W, Elstner E. Antioxidative properties of alcoholic extracts from Fraxinus excelsior, Populus tremula and Solidago virgaurea. Arzneimittelforschung. 1995;45(2):174–176.
  • Bovell-Benjamin AC, Roberts J. Naturally occurring toxicants: presence in selected commonly consumed fruits. In Regulating safety of traditional and ethnic foods 2016 Jan 1 (pp. 247–282).
  • Bovell-Benjamin AC, Roberts J. Naturally occurring toxicants: presence in selected commonly consumed fruits. In: Regulating safety of traditional and ethnic foods. Elsevier; 2016. p. 247–282.
  • Harlan RE, Kailas SR, Tagoe C, et al. Morphine actions in the rat forebrain: role of protein kinase C. Brain Res Bull. 2004;62(4):285–295.
  • Cruz FC, Javier Rubio F, Hope BT. Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction. Brain Res. 2015;1628(Pt A):157–173.
  • Bontempi B, Sharp FR. Systemic morphine-induced fos protein in the rat striatum and nucleus accumbens is regulated by μ opioid receptors in the substantia nigra and ventral tegmental area. J Neurosci. 1997;17(21):8596–8612.
  • López-Carreras N, Fernández-Vallinas S, Hernández R, et al. Short-term effect of an aqueous Fraxinus excelsior L. seed extract in spontaneously hypertensive rats. Food Res Int. 2013;53(1):81–87.
  • Khalili M, Ghosian MH, Niknam A. Study and comparison of the effect of oral administration of Peganum harmala seeds and methadone on morphine withdrawal syndrome in rats. Modares J Med Sci. 2010;13(1):37–46.
  • Singhai A, Patil UK. Amelioration of oxidative and inflammatory changes by Peganum harmala seeds in experimental arthritis. Clin Phytosci. 2021;7(1):13.
  • Miller R, Muraru S, Malpartida AB, et al. An approach to the proposal of drug combination for cancer therapy using a pathway data connectivity approach. 2022.
  • Salahshoor MR, Khashiadeh M, Roshankhah S, et al. Protective effect of crocin on liver toxicity induced by morphine. Res Pharm Sci. 2016;11(2):120–129.
  • Samarghandian S, Afshari R, Farkhondeh T. Effect of long-term treatment of morphine on enzymes, oxidative stress indices and antioxidant status in male rat liver. Int J Clin Exp Med. 2014;7(5):1449–1453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.