197
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Effects of protocatechuic acid against cisplatin-induced neurotoxicity in rat brains: an experimental study

, , , ORCID Icon &
Pages 725-734 | Received 09 Mar 2022, Accepted 30 Jun 2022, Published online: 16 Dec 2022

References

  • McWhinney SR, Goldberg RM, McLeod HL. Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther. 2009;8(17):10–16.
  • Stathopoulos GP. Liposomal cisplatin: a new cisplatin formulation. Anticancer Drugs. 2010;21(15):732–736.
  • Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). 2011;3(42):1351–1371.
  • Tuncer S, Dalkilic N, Akif Dunbar M, et al. Comparative effects of α-lipoic acid and melatonin on cisplatin-induced neurotoxicity. Int J Neurosci. 2010;120(40):655–663.
  • Kostova I. Platinum complexes as anticancer agents. Recent Pat Anticancer Drug Discov. 2006;1(8):1–22.
  • Oz M, Nurullahoglu Atalik KE, Yerlikaya FH, et al. Curcumin alleviates cisplatin induced learning and memory impairments. Neurobiol Learn Mem. 2015;123:43–49.
  • Namikawa K, Asakura M, Minami T, et al. Toxicity of cisplatin to the Central nervous system of male rabbits. BTER. 2000;74(47):223–236.
  • Tanaka T, Tanaka T, Tanaka M. Potential cancer chemopreventive activity of protocatechuic acid. Int J Clin Exp Med. 2011;3(20):27–33.
  • Masella R, Santangelo C, D'Archivio M, et al. Protocatechuic acid and human disease prevention: biological activities and molecular mechanisms. Curr Med Chem. 2012;19(9):2901–2917.
  • Kakkar S, Bais S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. 2014;2014:952943–952949.
  • Han L, Yang Q, Ma W, et al. Protocatechuic acid ameliorated palmitic-acid-induced oxidative damage in endothelial cells through activating endogenous antioxidant enzymes via an adenosine-monophosphate-activated-protein-kinase-dependent pathway. J Agric Food Chem. 2018;66(40):10400–10409.
  • Lee SH, Choi BY, Lee SH, et al. Administration of protocatechuic acid reduces traumatic brain injury-induced neuronal death. IJMS. 2017;18(12):2510.
  • Krzysztoforska K, Mirowska-Guzel D, Widy-Tyszkiewicz E. Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: review on the basis of in vitro and in vivo studies in rodents and humans. Nutr Neurosci. 2017;226:1–11.
  • An LJ, Guan S, Shi GF, et al. Protocatechuic acid from alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells. Food Chem Toxicol. 2006;44(21):436–443.
  • Harini R, Pugalendi KV. Antioxidant and antihyperlipidaemic activity of protocatechuic acid on streptozotocin-diabetic rats. Redox Rep. 2010;15(16):1–10.
  • Arafa MH, Atteia HH. Protective role of epigallocatechin gallate in a rat model of cisplatin induced cerebral inflammation and oxidative damage: ımpact of modulating NF-κB and Nrf2. Neurotox Res. 2020;37(19):380–396.
  • Żebrowska E, Maciejczyk M, Żendzian-Piotrowska M, et al. High protein diet ınduces oxidative stress in rat cerebral cortex and hypothalamus. IJMS. 2019;20(56):1547.
  • Jaggi AS, Singh N. Mechanisms in cancer-chemotherapeutic drugs induced peripheral neuropathy. Toxicology. 2012;291(1-3):1–9.
  • Mcdonald ES, Randon KR, Knight A, et al. Cisplatin preferentially binds to DNA in dorsal root ganglion neurons in vitro and in vivo: a potential mechanism for neurotoxicity. Neurobiol Dis. 2005;18(25):305–313.
  • Kawai Y, Nakao T, Kunimura N, et al. Relationship of intracellular calcium and oxygen radicals to cisplatin-related renal cell injury. J Pharmacol Sci. 2006;100(61):65–72.
  • Podratz JL, Knight AM, Ta LE, et al. Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis. 2011;41(26):661–668.
  • Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97(22):1634–1658.
  • Marullo R, Werner E, Degtyareva N, et al. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One. 2013;8(23):e81162.
  • Abdel-Wahab WM, Moussa FI. Neuroprotective effect of N-acetylcysteine against cisplatin-induced toxicity in rat brain by modulation of oxidative stress and inflammation. Drug Des Devel Ther. 2019;13:1155–1162.
  • Ban M, Hettich D, Huguet N. Nephrotoxicity mechanism of cis-platinum (II) diamine dichloride in mice. Toxicol Lett. 1994;71(29):161–168.
  • Abdel Moneim AE. Azadirachta indica attenuates cisplatin-induced neurotoxicity in rats. Indian J Pharmacol. 2014;46(41):316–321.
  • Bao Y-M, An, L-J, Bo Jiang. Protective effect of protocatechuic acid from alpinia oxyphylla on hydrogen peroxideinduced oxidative PC12 cell death. Eur J Pharmacol. 2006a;538(1-3):73–79.
  • Guan S, Jiang B, Bao YM, et al. Protocatechuic acid suppresses MPP+-induced mitochondrial dysfunction and apoptotic cell death in PC12 cells. Food Chem Toxicol. 2006b;44(28):1659–1666.
  • Thakare VN, Dhakane VD, Patel BM. Attenuation of acute restraint stress-induced depressive like behavior and hippocampal alterations with protocatechuic acid treatment in mice. Metab Brain Dis. 2017;32(36):401–413.
  • Adedara IA, Fasina OB, Ayeni MF, et al. Protocatechuic acid ameliorates neurobehavioral deficits via suppression of oxidative damage, inflammation, caspase-3 and acetylcholinesterase activities in diabetic rats. Food Chem Toxicol. 2019;125:170–181.
  • Cheng YT, Lin JA, Jhang JJ, et al. Protocatechuic acid-mediated DJ-1/PARK7 activation followed by PI3K/mTOR signaling pathway activation as a novel mechanism for protection against ketoprofen-induced oxidative damage in the gastrointestinal mucosa. Free Radic Biol Med. 2019;130:35–47.
  • Zhang Z, Li G, Szeto SSW, et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of parkinson disease. Free Radic Biol Med. 2015;84:331–343.
  • Adeyanju AA, Oso BJ, Molehin OR, et al. Treatment with protocatechuic acid attenuates cisplatin-induced toxicity in the brain and liver of male wistar rats. Adv Tradit Med. 2021.
  • Romuk E, Szczurek W, Nowak P, et al. Effects of propofol on oxidative stress parameters in selected parts of the brain in a rat model of parkinson disease. Postepy Hig Med Dosw (Online). 2016;70(34):1441–1450.
  • Wang WF, Wu SL, Liou YM, et al. MPTP lesion causes neuroinflammation and deficits in object recognition in wistar rats. Behav Neurosci. 2009;123(35):1261–1270.
  • Jangra A, Kasbe P, Pandey SN, et al. Hesperidin and silibinin ameliorate aluminum-induced neurotoxicity: modulation of antioxidants and inflammatory cytokines level in mice hippocampus. Biol Trace Elem Res. 2015;168(43):462–471.
  • Jangra A, Sriram CS, Dwivedi S, et al. Sodium phenylbutyrate and edaravone abrogate chronic restraint stressinduced behavioral deficits: implication of oxido-nitrosative, endoplasmic reticulum stress Cascade, and neuroinflammation. Cell Mol Neurobiol. 2017;37(60):65–81.
  • Jangra A, Kwatra M, Singh T, et al. Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus. Eur J Pharmacol. 2016b;791:51–61.
  • Akman T, Akman L, Erbas O, et al. The preventive effect of oxytocin to cisplatin-induced neurotoxicity: an experimental rat model. Bio Med Res Int. 2015;2015:1–5.
  • Chen C, Zhang H, Xu H, et al. Ginsenoside Rb1 ameliorates cisplatin-induced learning and memory impairments. J Ginseng Res. 2019;43(45):499–507.
  • Saadati H, Noroozzadeh S, Esmaeili H, et al. The neuroprotective effect of mesna on cisplatin-induced neurotoxicity: behavioral, electrophysiological, and molecular studies. Neurotox Res. 2021;39(57):826–840.
  • Kho AR, Choi BY, Lee SH, et al. Effects of protocatechuic acid (PCA) on global cerebral ischemia-induced hippocampal neuronal death. IJMS. 2018;19(55):1420.
  • Khadrawy YA, El-Gizawy MM, Sorour SM, et al. Effect of curcumin nanoparticles on the cisplatin-induced neurotoxicity in rat. Drug Chem Toxicol. 2019;42(52):194–202.
  • Yin X, Zhang X, Lv C, et al. Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia. Sci Rep. 2015;5:14507.
  • Gabrovska K, Marinov I, Godjevargova T, et al. The influence of the support nature on the kinetics parameters, inhibition constants and reactivation of immobilized acetylcholinesterase. Int J Biol Macromol. 2008;43(4):339–345.
  • Chtourou Y, Gargouri B, Kebieche M, et al. Naringin abrogates cisplatin-induced cognitive deficits and cholinergic dysfunction through the down-regulation of AChE expression and iNos signaling pathways in hippocampus of aged rats. J Mol Neurosci. 2015;56(2):349–362.
  • Gomaa DH, Hozayen WG, Al-Shafeey H, et al. Ginkgo biloba alleviates cisplatin-mediated neurotoxicity in rats via modulating APP/Aβ/P2X7R/P2Y12R and XIAP/BDNF-dependent caspase-3 apoptotic pathway. Appl Sci. 2020;10(14):4786.
  • Melo JB, Agostinho P, Oliveira CR. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res. 2003;45(1):117–127.
  • Owoeye O, Adedara IA, Farombi EO. Pretreatment with taurine prevented brain injury and exploratory behaviour associated with administration of anticancer drug cisplatin in rats. Biomed Pharmacother. 2018;102:375–384.
  • Kandeil MA, Mahmoud MO, Abdel-Razik A-RH, et al. Thymoquinone and geraniol alleviate cisplatin-induced neurotoxicity in rats through downregulating the p38 MAPK/STAT-1 pathway and oxidative stress. Life Sci. 2019;228:145–151.
  • Kangtao Y, Bais S. Neuroprotective effect of procatechuic acid through MAO-B inhibition in aluminium chloride induced dementia of alzheimer’s type in rats. International J. of Pharmacology. 2018;14(51):879–888.
  • Slotkin TA. Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol. 2004;198(2):132–151.
  • El-Ansary AK, Al-Daihan SK, El-Gezeery AR. On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups. Lipids Health Dis. 2011;10:142.
  • Juárez Olguín H, Calderón Guzmán D, Hernández García E, et al. The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev. 2016;2016:9730467.
  • Calabresi P, Picconi B, Tozzi A, et al. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 2007;30(5):211–219.
  • Mira RG, Cerpa W. Building a bridge Between NMDAR-Mediated excitotoxicity and mitochondrial dysfunction in chronic and acute diseases. Cell Mol Neurobiol. 2021;41(7):1413–1430.
  • Fitsanakis VA, Aschner M. The importance of glutamate, glycine, and gamma-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity. Toxicol Appl Pharmacol. 2005;204(58):343–354.
  • Abdelkader NF, Saad MA, Abdelsalam RM. Neuroprotective effect of nebivolol against cisplatin associated depressive like behavior in rats. J Neurochem. 2017;141(3):449–460.
  • Olas B, Wachowicz B, Majsterek I, et al. Resveratrol may reduce oxidative stress induced by platinum compounds in human plasma, blood platelets and lymphocytes. Anticancer Drugs. 2005;16(59):659–665.
  • Karale S, Kamath JV. Effect of daidzein on cisplatin-induced hematotoxicity and hepatotoxicity in experimental rats. Indian J Pharmacol. 2017;49(1):49–54.
  • Okafor IA, Nweke JO, Nnamah US. Hematological dynamics following the co-administration of resveratrol and cisplatin in sprague–dawley rats. J Clın Med Kaz. 2018;2(48):22–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.