1,222
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Simultaneous waterway scheduling, berth allocation, and quay crane assignment: A novel matheuristic approach

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 7576-7593 | Received 31 Jan 2020, Accepted 22 Oct 2020, Published online: 18 Nov 2020

References

  • Correcher, J. F., T. Van den Bossche, R. Alvarez-Valdes, and G. V. Berghe. 2019. “The Berth Allocation Problem in Terminals with Irregular Layouts.” European Journal of Operational Research 272 (3): 1096–1108. doi: 10.1016/j.ejor.2018.07.019
  • Corry, P., and C. Bierwirth. 2019. “The Berth Allocation Problem with Channel Restrictions.” Transportation Science 53 (3): 708–727.
  • Figielska, E. 2018. “Scheduling in a two-Stage Flowshop with Parallel Unrelated Machines at Each Stage and Shared Resources.” Computers & Industrial Engineering 126: 435–450. doi: 10.1016/j.cie.2018.09.038
  • Golneshini, F. P., and H. Fazlollahtabar. 2019. “Meta-heuristic Algorithms for a Clustering-Based Fuzzy bi-Criteria Hybrid Flow Shop Scheduling Problem.” Soft Computing 23 (22): 12103–12122. doi: 10.1007/s00500-019-03767-0
  • Hill, A., E. Lalla-Ruiz, S. Voß, and M. Goycoolea. 2019. “A Multi-Mode Resource-Constrained Project Scheduling Reformulation for the Waterway Ship Scheduling Problem.” Journal of Scheduling 22 (2): 173–182. doi: 10.1007/s10951-018-0578-9
  • Holland, J. H. 1992 . Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Cambridge, MA: MIT Press.
  • Hu, Q.-M., Z.-H. Hu, and Y. Du. 2014. “Berth and Quay-Crane Allocation Problem Considering Fuel Consumption and Emissions from Vessels.” Computers & Industrial Engineering 70: 1–10. doi: 10.1016/j.cie.2014.01.003
  • Imai, A., K. Nagaiwa, and C. W. Tat. 1997. “Efficient Planning of Berth Allocation for Container Terminals in Asia.” Journal of Advanced Transportation 31 (1): 75–94. doi: 10.1002/atr.5670310107
  • Imai, A., E. Nishimura, and S. Papadimitriou. 2001. “The Dynamic Berth Allocation Problem for a Container Port.” Transportation Research Part B: Methodological 35 (4): 401–417. doi: 10.1016/S0191-2615(99)00057-0
  • Imai, A., E. Nishimura, and S. Papadimitriou. 2003. “Berth Allocation with Service Priority.” Transportation Research Part B: Methodological 37 (5): 437–457. doi: 10.1016/S0191-2615(02)00023-1
  • IMO. https://business.un.org/en/entities/13.
  • Khare, A., and S. Agrawal. 2019. “Scheduling Hybrid Flowshop with Sequence-Dependent Setup Times and due Windows to Minimize Total Weighted Earliness and Tardiness.” Computers & Industrial Engineering 135: 780–792. doi: 10.1016/j.cie.2019.06.057
  • Lalla-Ruiz, E., X. Shi, and S. Voß. 2018. “The Waterway Ship Scheduling Problem.” Transportation Research Part D: Transport and Environment 60: 191–209. doi: 10.1016/j.trd.2016.09.013
  • Lin, C. C., W. Y. Liu, and Y. H. Chen. 2020. “Considering Stockers in Reentrant Hybrid Flow Shop Scheduling with Limited Buffer Capacity.” Computers & Industrial Engineering 139: 106154. doi: 10.1016/j.cie.2019.106154
  • Liu, M., X. Yang, F. Chu, J. Zhang, and C. Chu. 2020. “Energy-oriented bi-Objective Optimization for the Tempered Glass Scheduling.” Omega 90: 101995. doi: 10.1016/j.omega.2018.11.004
  • Liu, M., X. Yang, J. Zhang, and C. Chu. 2017. “Scheduling a Tempered Glass Manufacturing System: a Three-Stage Hybrid Flow Shop Model.” International Journal of Production Research 55 (20): 6084–6107. doi: 10.1080/00207543.2017.1324222
  • Lovric, M. 2011. International Encyclopedia of Statistical Science. Heidelberg: Springer.
  • Lu, C., L. Gao, X. Li, and S. Xiao. 2017. “A Hybrid Multi-Objective Grey Wolf Optimizer for Dynamic Scheduling in a Real-World Welding Industry.” Engineering Applications of Artificial Intelligence 57: 61–79. doi: 10.1016/j.engappai.2016.10.013
  • Lu, C., L. Gao, Q. Pan, X. Li, and J. Zheng. 2019. “A Multi-Objective Cellular Grey Wolf Optimizer for Hybrid Flowshop Scheduling Problem Considering Noise Pollution.” Applied Soft Computing 75: 728–749. doi: 10.1016/j.asoc.2018.11.043
  • Lu, C., S. Xiao, X. Li, and L. Gao. 2016. “An Effective Multi-Objective Discrete Grey Wolf Optimizer for a Real-World Scheduling Problem in Welding Production.” Advances in Engineering Software 99: 161–176. doi: 10.1016/j.advengsoft.2016.06.004
  • Mahmoodjanloo, M., G. Chen, S. H. Iranmanesh, S. Asian, and R. Tavakkoli-Moghaddam. 2020. “A Hybrid Solution Method for the in-Port Multi-Ship Routing and Scheduling Problem Considering Draft Limits and Time-Conflict Avoiding Constraints.” Maritime Policy & Management Article in press.
  • Meng, L., C. Zhang, X. Shao, Y. Ren, and C. Ren. 2019. “Mathematical Modelling and Optimisation of Energy-Conscious Hybrid Flow Shop Scheduling Problem with Unrelated Parallel Machines.” International Journal of Production Research 57 (4): 1119–1145. doi: 10.1080/00207543.2018.1501166
  • Meng, L., C. Zhang, X. Shao, B. Zhang, Y. Ren, and W. Lin. 2020. “More MILP Models for Hybrid Flow Shop Scheduling Problem and its Extended Problems.” International Journal of Production Research 58 (13): 3905–3930. doi: 10.1080/00207543.2019.1636324
  • Mirjalili, S., S. M. Mirjalili, and A. Lewis. 2014. “Grey Wolf Optimizer.” Advances in Engineering Software 69: 46–61. doi: 10.1016/j.advengsoft.2013.12.007
  • Monaco, M. F., and M. Sammarra. 2007. “The Berth Allocation Problem: a Strong Formulation Solved by a Lagrangean Approach.” Transportation Science 41 (2): 265–280. doi: 10.1287/trsc.1060.0171
  • Pan, Q.-K., L. Wang, J.-Q. Li, and J.-H. Duan. 2014. “A Novel Discrete Artificial bee Colony Algorithm for the Hybrid Flowshop Scheduling Problem with Makespan Minimisation.” Omega 45: 42–56. doi: 10.1016/j.omega.2013.12.004
  • Pan, Q.-K., L. Wang, and B. Qian. 2009. “A Novel Differential Evolution Algorithm for bi-Criteria no-Wait Flow Shop Scheduling Problems.” Computers & Operations Research 36 (8): 2498–2511. doi: 10.1016/j.cor.2008.10.008
  • Pellegrini, P., G. D. Tollo, and R. Pesenti. 2019. “Scheduling Ships Movements Within a Canal Harbor.” Soft Computing 23 (9): 2923–2936. doi: 10.1007/s00500-018-3469-2
  • Peng, T., and B. Zhou. 2019. “Hybrid bi-Objective Gray Wolf Optimization Algorithm for a Truck Scheduling Problem in the Automotive Industry.” Applied Soft Computing 81: 105513. doi: 10.1016/j.asoc.2019.105513
  • Qin, H., P. Fan, H. Tang, P. Huang, B. Fang, and S. Pan. 2019. “An Effective Hybrid Discrete Grey Wolf Optimizer for the Casting Production Scheduling Problem with Multi-Objective and Multi-Constraint.” Computers & Industrial Engineering 128: 458–476. doi: 10.1016/j.cie.2018.12.061
  • Ruiz, R., F. S. Şerifoğlu, and T. Urlings. 2008. “Modeling Realistic Hybrid Flexible Flowshop Scheduling Problems.” Computers & Operations Research 35 (4): 1151–1175. doi: 10.1016/j.cor.2006.07.014
  • Storn, R., and K. Price. 1997. “Differential Evolution – A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces.” Journal of Global Optimization 11 (4): 341–359. doi: 10.1023/A:1008202821328
  • Tavakkoli-Moghaddam, R., S. Fatemi-Anaraki, D. Abdolhamidi, and B. Vahedi-Nouri. 2019. “Integrated waterway scheduling, berth allocation and quay crane assignment problem by using a hybrid flow shop concept.” In: Proceedings of the 8th International Conference on Industrial Engineering and Systems Management (IESM), Shanghai, China, IEEE, 25-27 September 2019, pp. 265-269.
  • UNCTAD. 2019. “Review of Maritime Transport.” Accessed 30 October 2019. https://unctad.org/en/PublicationChapters/rmt2019ch1_en.pdf.
  • Vahedi-Nouri, B., P. Fattahi, and R. Ramezanian. 2013. “Hybrid Firefly-Simulated Annealing Algorithm for the Flow Shop Problem with Learning Effects and Flexible Maintenance Activities.” International Journal of Production Research 51 (12): 3501–3515. doi: 10.1080/00207543.2012.750771
  • Wang, S., X. Wang, F. Chu, and J. Yu. 2020. “An Energy-Efficient two-Stage Hybrid Flow Shop Scheduling Problem in a Glass Production.” International Journal of Production Research 58 (8): 2283–2314. doi: 10.1080/00207543.2019.1624857
  • Wang, T., X. Wang, and Q. Meng. 2018. “Joint Berth Allocation and Quay Crane Assignment Under Different Carbon Taxation Policies.” Transportation Research Part B: Methodological 117: 18–36. doi: 10.1016/j.trb.2018.08.012
  • Xu, D., C.-L. Li, and J. Y.-T. Leung. 2012. “Berth Allocation with Time-Dependent Physical Limitations on Vessels.” European Journal of Operational Research 216 (1): 47–56. doi: 10.1016/j.ejor.2011.07.012
  • Yu, C., Q. Semeraro, and A. Matta. 2018. “A Genetic Algorithm for the Hybrid Flow Shop Scheduling with Unrelated Machines and Machine Eligibility.” Computers & Operations Research 100: 211–229. doi: 10.1016/j.cor.2018.07.025
  • Zhang, X. Y., and L. Chen. 2018. “A re-Entrant Hybrid Flow Shop Scheduling Problem with Machine Eligibility Constraints.” International Journal of Production Research 56 (16): 5293–5305. doi: 10.1080/00207543.2017.1408971
  • Zhang, X., J. Lin, Z. Guo, and T. Liu. 2016. “Vessel Transportation Scheduling Optimization Based on Channel–Berth Coordination.” Ocean Engineering 112: 145–152. doi: 10.1016/j.oceaneng.2015.12.011
  • Zhang, J., T. A. Santos, C. G. Soares, and X. Yan. 2017. “Sequential Ship Traffic Scheduling Model for Restricted two-way Waterway Transportation.” Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 231 (1): 86–97.
  • Zhen, L., Z. Liang, D. Zhuge, L. H. Lee, and E. P. Chew. 2017. “Daily Berth Planning in a Tidal Port with Channel Flow Control.” Transportation Research Part B: Methodological 106: 193–217. doi: 10.1016/j.trb.2017.10.008
  • Zhou, B., and W. Liu. 2019. “Energy-efficient Multi-Objective Scheduling Algorithm for Hybrid Flow Shop with Fuzzy Processing Time.” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 233 (10): 1282–1297.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.