184
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A hybrid LSTM method for forecasting demands of medical items in humanitarian operations

, &
Pages 6046-6063 | Received 09 Feb 2023, Accepted 03 Jan 2024, Published online: 13 Feb 2024

References

  • Adur Kannan, B., G. Kodi, O. Padilla, D. Gray, and B. C. Smith. 2020. “Forecasting Spare Parts Sporadic Demand Using Traditional Methods and Machine Learning – A Comparative Study.” SMU Data Science Review 3 (2): Article 9.
  • Babai, M. Z., A. A. Syntetos, and R. Teunter. 2010. “On the Empirical Performance of (T,s,S) Heuristics.” European Journal of Operational Research 202 (2): 466–472. https://doi.org/10.1016/j.ejor.2009.05.030.
  • Babai, M. Z., A. Tsadiras, and C. Papadopoulos. 2020. “On the Empirical Performance of Some new Neural Network Methods for Forecasting Intermittent Demand.” IMA Journal of Management Mathematics 31 (3): 281–305. https://doi.org/10.1093/imaman/dpaa003.
  • Babaveisi, V., E. Teimoury, M. R. Gholamian, and B. Rostami-Tabar. 2023. “Integrated Demand Forecasting and Planning Model for Repairable Spare Part: An Empirical Investigation.” International Journal of Production Research 61 (20): 6791–6807. https://doi.org/10.1080/00207543.2022.2137596.
  • Chen, G.Y., and W.F. Xie. 2007. “Pattern Recognition with SVM and Dualtree Complex Wavelets.” Image and Vision Computing 25 (6): 960–966.
  • Chaudhuri, A. 2016. “Fuzzy Rough Support Vector Machine for Data Classification.” International Journal of Fuzzy System Applications 5 (2): 26–53. https://doi.org/10.4018/IJFSA.2016040103.
  • Croston, J. D. 1972. “Forecasting and Stock Control for Intermittent Demands.” Journal of the Operational Research Society 23 (3): 289–303. https://doi.org/10.1057/jors.1972.50.
  • Deng, Y., H. Fan, and S. Wu. 2020. “A Hybrid ARIMA-LSTM Method Optimized by BP in the Forecast of Outpatient Visits.” Journal of Ambient Intelligence and Humanized Computing 14 (5): 1–11.
  • De Oliveira, A. C. A., J. M. Jorge, and A. C. dos Santos. 2020. “Neural Network with Specialized Knowledge for Forecasting Intermittent Demand.” In Transdisciplinary Engineering for Complex Socio-Technical Systems–Real-Life Applications. J. Pokojski et al., 524–533. IOS Press.
  • Ehteram, M., and E. Ghanbari-Adivi. 2023. “Self-attention (SA) Temporal Convolutional Network (SATCN)-Long Short-term Memory Neural Network (SATCN-LSTM): An Advanced Python Code for Predicting Groundwater Level.” Environmental Science and Pollution Research 30: 1–19.
  • Hasni, M., M. S. Aguir, M. Z. Babai, and Z. Jemai. 2019a. “Spare Parts Demand Forecasting: A Review on Bootstrapping Methods.” International Journal of Production Research 57 (15–16): 4791–4804. https://doi.org/10.1080/00207543.2018.1424375.
  • Hasni, M., M. Z. Babai, M. S. Aguir, and Z. Jemai. 2019b. “An Investigation on Bootstrapping Forecasting Methods for Intermittent Demands.” International Journal of Production Economics 209:20–29. https://doi.org/10.1016/j.ijpe.2018.03.001.
  • Hasni, M., M. S. Aguir, M. Z. Babai, and Z. Jemai 2019c. “On the Performance of Adjusted Bootstrapping Methods for Intermittent Demand Forecasting.” International Journal of Production Economics 216: 145–153.
  • Hua, Z. S., B. Zhang, J. Yang, and D. S. Tan. 2007. “A New Approach of Forecasting Intermittent Demand for Spare Parts Inventories in the Process Industries.” Journal of the Operational Research Society 58 (1): 52–61.
  • Hussain, A., Z. A. Khan, T. Hussain, F. U. M. Ullah, S. Rho, and S. W. Baik. 2022. “A Hybrid Deep Learning-based Network for Photovoltaic Power Forecasting.” Complexity 2022. https://doi.org/10.1155/2022/7040601.
  • Hyndman, R. J., and A. B. Koehler. 2006. “Another Look at Measures of Forecast Accuracy.” International Journal of Forecasting 22 (4): 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001.
  • Jiang, P., Y. Huang, and X. Liu. 2021. “Intermittent Demand Forecasting for Spare Parts in the Heavy-Duty Vehicle Industry: A Support Vector Machine Model.” International Journal of Production Research 59 (24): 7423–7440. https://doi.org/10.1080/00207543.2020.1842936.
  • Kalchschmidt, M., R. Verganti, and G. Zotteri. 2006. “Forecasting Demand from Heterogeneous Customers.” International Journal of Operations & Production Management 26 (6): 619–638. https://doi.org/10.1108/01443570610666975.
  • Kingma, D.P., and J. Jimmy Ba 2014. “Adam: A Method for Stochastic Optimization.” arXiv:1412.6980v9. https://doi.org/10.48550/arXiv.1412.6980.
  • Kourentzes, N. 2013. “Intermittent Demand Forecasts with Neural Networks.” International Journal of Production Economics 143 (1): 198–206. https://doi.org/10.1016/j.ijpe.2013.01.009.
  • Koutsandreas, D., E. Spiliotis, F. Petropoulos, and V. Assimakopoulos. 2022. “On the Selection of Forecasting Accuracy Measures.” Journal of the Operational Research Society 73 (5): 937–954. https://doi.org/10.1080/01605682.2021.1892464.
  • Li, L., Y. Kang, F. Petropoulos, and F. Li. 2023. “Feature-based Intermittent Demand Forecast Combinations: Accuracy and Inventory Implications.” International Journal of Production Research 61 (22): 7557–7572. https://doi.org/10.1080/00207543.2022.2153941.
  • Livieris, I. E., S. Stavroyiannis, E. Pintelas, and P. Pintelas. 2020. “A Novel Validation Framework to Enhance Deep Learning Models in Time-Series Forecasting.” Neural Computing and Applications 32 (23): 17149–17167. https://doi.org/10.1007/s00521-020-05169-y.
  • Lolli, F., E. Balugani, A. Ishizaka, R. Gamberini, B. Rimini, and A. Regattieri. 2019. “Machine Learning for Multi-criteria Inventory Classification Applied to Intermittent Demand.” Production Planning & Control 30 (1): 76–89. https://doi.org/10.1080/09537287.2018.1525506.
  • Lolli, F., R. Gamberini, A. Regattieri, E. Balugani, T. Gatos, and S. Gucci. 2017. “Single-hidden Layer Neural Networks for Forecasting Intermittent Demand.” International Journal of Production Economics 183:116–128. https://doi.org/10.1016/j.ijpe.2016.10.021.
  • Mellit, A., A. M. Pavan, and V. Lughi. 2021. “Deep Learning Neural Networks for Short-Term Photovoltaic Power Forecasting.” Renewable Energy 172:276–288. https://doi.org/10.1016/j.renene.2021.02.166.
  • Mukhopadhyay, S., A. O. Solis, and R. S. Gutierrez. 2012. “The Accuracy of Non-traditional versus Traditional Methods of Forecasting Lumpy Demand.” Journal of Forecasting 31: 721–735. https://doi.org/10.1002/for.1242.
  • Murray, P. W., B. Agard, and M. A. Barajas. 2018. “Forecast of Individual Customer’s Demand from a Large and Noisy Dataset.” Computers & Industrial Engineering 118:33–43. https://doi.org/10.1016/j.cie.2018.02.007.
  • Omar, H., W. Klibi, M. Z. Babai, and Y. Ducq. 2023. “Basket Data-driven Approach for Omnichannel Demand Forecasting.” International Journal of Production Economics 257:108748. https://doi.org/10.1016/j.ijpe.2022.108748.
  • Prestwich, S., R. Rossi, S. A. Tarim, and B. Hnich. 2014. “Mean-Based Error Measures for Intermittent Demand Forecasting.” International Journal of Production Research 52 (22): 6782–6791. https://doi.org/10.1080/00207543.2014.917771.
  • Rouhani-Tazangi, M. R., M. A. Khoei, D. Pamucar, and B. Feghhi. 2023. “Evaluation of Key Indicators Affecting the Performance of Healthcare Supply Chain Agility.” Supply Chain Forum: An International Journal 24 (3): 351–370. https://doi.org/10.1080/16258312.2023.2171239.
  • Sanguri, K., S. Patra, K. Nikolopoulos, and S. Punia. 2023. “Intermittent Demand, Inventory Obsolescence, and Temporal Aggregation Forecasts.” International Journal of Production Research, 1–23. In press. https://doi.org/10.1080/00207543.2023.2199435.
  • Seyedan, M., F. Mafakheri, and C. Wang. 2022. “Cluster-Based Demand Forecasting Using Bayesian Model Averaging: An Ensemble Learning Approach.” Decision Analytics Journal 3:100033. https://doi.org/10.1016/j.dajour.2022.100033.
  • Siddiqui, R., M. Azmat, S. Ahmed, and S. Kummer. 2022. “A Hybrid Demand Forecasting Model for Greater Forecasting Accuracy: The Case of the Pharmaceutical Industry.” Supply Chain Forum: An International Journal 23 (2): 124–134. https://doi.org/10.1080/16258312.2021.1967081.
  • Smyl, S. 2020. “A Hybrid Method of Exponential Smoothing and Recurrent Neural Networks for Time Series Forecasting.” International Journal of Forecasting 36 (1): 75–85. https://doi.org/10.1016/j.ijforecast.2019.03.017.
  • Sun, S., Y. Wei, and S. Wang 2018. “AdaBoost-LSTM Ensemble Learning for Financial Time Series Forecasting.” In Computational Science – ICCS 2018. Lecture Notes in Computer Science, edited by Y. Shi et al., vol 10862. Cham: Springer. https://doi.org/10.1007/978-3-319-93713-7_55
  • Syntetos, A. A., M. Z. Babai, and E. S. Gardner Jr. 2015. “Forecasting Intermittent Inventory Demands: Simple Parametric Methods vs. Bootstrapping.” Journal of Business Research 68 (8): 1746–1752. https://doi.org/10.1016/j.jbusres.2015.03.034.
  • Syntetos, A. A., and J. E. Boylan. 2005. “The Accuracy of Intermittent Demand Estimates.” International Journal of Forecasting 21 (2): 303–314. https://doi.org/10.1016/j.ijforecast.2004.10.001.
  • Syntetos, A. A., J. E. Boylan, and J. Croston. 2005. “On the Categorization of Demand Patterns.” Journal of the Operational Research Society 56 (5): 495–503. https://doi.org/10.1057/palgrave.jors.2601841.
  • Tian, X., H. Wang, and E. Erjiang. 2021. “Forecasting Intermittent Demand for Inventory Management by Retailers: A New Approach.” Journal of Retailing and Consumer Services 62:102662. https://doi.org/10.1016/j.jretconser.2021.102662.
  • Wang, K., X. Qi, and H. Liu. 2019. “Photovoltaic Power Forecasting Based LSTM-Convolutional Network.” Energy 189:116225. https://doi.org/10.1016/j.energy.2019.116225.
  • Willemain, T. R., C. N. Smart, and H. F. Schwarz. 2004. “A New Approach to Forecasting Intermittent Demand for Service Parts Inventories.” International Journal of Forecasting 20 (3): 375–387. https://doi.org/10.1016/S0169-2070(03)00013-X.
  • Wu, P., and T. G. Dietterich 2004. “Improving SVM Accuracy by Training on Auxiliary Data Sources.” Proceedings of the Twenty-first International Conference on Machine Learning: 871–878.
  • Yang, Y., C. Fan, and H. Xiong. 2022. “A Novel General-Purpose Hybrid Model for Time Series Forecasting.” Applied Intelligence 52 (2): 2212–2223. https://doi.org/10.1007/s10489-021-02442-y.
  • Yu, L., Y. Ma, and M. Ma 2021. “An Effective Rolling Decomposition-Ensemble Model for Gasoline Consumption Forecasting.” Energy 22 (1): 119869
  • Zhang, G.P., and M. Qi 2005. “Neural Network Forecasting for Seasonal and Trend Time Series.” European Journal of Operational Research 160 (2): 501–514.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.