228
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Robust adaptive tracking control of MIMO nonlinear systems in the presence of actuator hysteresis

, &
Pages 2359-2369 | Received 01 Aug 2014, Accepted 28 Nov 2014, Published online: 06 Jan 2015

References

  • Anderson, M., Buehner, M., Yong, P., Hittle, D., Anderson, C., Tu, J., & Hodgson, D. (2008). MIMO robust control of HAVC systems. IEEE Transactions on Control Systems Technology, 16(3), 475–483.
  • Brokate, M., & Sprekels, J. (1996). Hysteresis and phase transitions. New York, NY: Springer-Verlag.
  • Cai, J., Wen, C., Su, H., & Liu, Z. (2013). Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems. IEEE Transactions on Automatic Control, 58(9), 2388–2394.
  • Chen, M., Ge, S.S., & Ee, B.V. (2010). Robust adaptive neural network control for a class of uncertain MIMO nonlinear system with input nonlinearities. IEEE Transactions on Neural Networks, 21(5), 796–812.
  • Dawson, D.M., Carroll, J.J., & Schneider, M. (1994). Integrator backstepping control of brush DC motor turning a robotic load. IEEE Transactions on Control Systems Technology, 2(3), 233–244.
  • Deng, M., & Wang, A. (2012). Robust non-linear control design to an ionic polymer metal composite with hysteresis using operator-based approach. IET Control Theory and Applications, 6(17), 2667–2675.
  • Esbrook, A., Tan, X., & Khalil, H.K. (2013). Control of systems with hysteresis via servocompensation and its application to nanopositioning. IEEE Transactions on Control Systems Technology, 21(3), 725–738.
  • Gu, G.Y., Zhu, L.M., & Su, C.Y. (2014). Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model. IEEE Transactions on Industrial Electronics, 61(3), 1583–1595.
  • Jain, R.K., Majumder, S., & Dutta, A. (2012). Microassembly by an IPMC-based flexible 4-bar mechanism. Smart Materials and Structures, 21, 075004.
  • Kim, B., Ryu, J., Jeong, Y., Tak, Y., Kim, B., & Park, J.O. (2003). A ciliary based 8-legged walking micro robot using cast IPMC actuators. In: Proceedings of ICRA’03 IEEE International Conference on Robotics and Automation (pp. 2940–2945). Taipei, Taiwan: IEEE.
  • Krejci, P., & Kuhnen, K. (2001). Inverse control of systems with hysteresis and creep. IEE Proceedings – Control Theory and Applications, 148(3), 185–192.
  • Li, Y., Tong, S., & Li, T. (2012). Adaptive fuzzy output feedback control of MIMO nonlinear uncertain systems with time-varying delays and unknown backlash-like hysteresis. Neurocomputing, 93, 56–66.
  • Macki, J.W., Nistri, P., & Zecca, P. (1993). Mathematical models for hysteresis. SIAM Review, 35(1), 94–123.
  • Mousavi, S.H., Ranjbar-Sahraei, B., & Noroozi, N. (2012). Output feedback controller for hysteretic time-delayed MIMO nonlinear systems: An H∞-based indirect adaptive interval type-2 fuzzy approach. Nonlinear Dynamics, 68, 63–76.
  • Parlangeli, G., & Corradini, M.L. (2005). Ouput zeroing of MIMO plants in the presence of actuator and sensor uncertain hysteresis nonlinearities. IEEE Transactions on Automatic Control, 50(9), 1403–1407.
  • Polycarpou, M.M., & Ioannou, P.A. (1996). A robust adaptive nonlinear control design. Automatica, 32(3), 423–427.
  • Qiao, J., Dai, Y., Liu, J., & Wang, H. (2007). Robust adaptive fuzzy output tracking control of uncertain robot system using backstepping design. Proceedings of 26th Chinese Control Conference (pp. 303–308). Zhangjiajie, China: IEEE.
  • Ren, B., San, P.P., Ge, S.S., & Lee, T.H. (2009). Adaptive dynamic surface control for a class of strict-feedback nonlinear systems with unknown backlash-like hysteresis. Proceedings of American Control Conference (pp. 4482–4487). St. Louis, Missouri: IEEE
  • Shan, Y., & Leang, K.K. (2009). Repetitive control with Prandtl-Ishlinskii hysteresis inverse for piezo-based nanopositioning. Proceedings of American Control Conference (pp. 301–306). St. Louis, Missouri: IEEE.
  • Su, C.Y., Wang, Q., Chen, X., & Rakheja, S. (2005). Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis. IEEE Transactions on Automatic Control, 50(12), 2069–2074.
  • Swaroop, D., Hedrick, J.K., Yip, P.P., & Gerdes, J.C. (2000). Dynamic surface control for a class of nonlinear systems. IEEE Transactions on Automatic Control, 45(10), 1893–1899.
  • Tan, X., & Baras, J.S. (2004). Modeling and control of hysteresis in magnetostrictive actuators. Automatica, 40(9), 1469–1480.
  • Tang, X.D., Tao, G., & Joshi, S.M. (2007). Adaptive actuator failure compensation for nonlinear MIMO systems with an aircraft control application. Automatica, 43(11), 1869–1883.
  • Tao, G., & Kokotovic, P.V. (1995). Adaptive control of plants with unknown hysteresis. IEEE Transactions on Automatic Control, 40, 200–212.
  • Vo-Minh, T., Tjahjowidodoand, T., Ramon, H., & Van Brussel, H. (2011). A new approach to modeling hysteresis in a pneumatic artificial muscle using the Maxwell-slip model. IEEE/ASME Transactions on Mechatronics, 16(1), 177–186.
  • Zhang, T.P., & Ge, S.S. (2007). Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs. Automatica, 43, 1021–1033.
  • Zhang, X., Lin, Y., & Mao, J. (2011). A robust adaptive dynamic surface control for a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis. International Journal of Robust and Nonlinear Control, 21, 1541–1561.
  • Zhou, J., Wen, C., & Li, T. (2012). Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity. IEEE Transactions on Automatic Control, 57(10), 2627–2633.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.