178
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms

, , &
Pages 2407-2420 | Received 03 Mar 2014, Accepted 05 Jan 2015, Published online: 13 Feb 2015

References

  • Archer, G., Saltelli, A., & Sobol, I. (1997). Sensitivity measures, ANOVA-like techniques and the use of bootstrap. Journal of Statistical Computation and Simulation, 58(2), 99–120.
  • Bader, J., & Zitzler, E. (2011). HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 19, 45–76.
  • Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V. (2006). Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, 10, 646–657.
  • Cohen, J. (2013). Statistical power analysis for the behavioral sciences. London: Routledge Academic.
  • Corne, D., & Knowles, J. (2007). Techniques for highly multiobjective optimisation: Some nondominated points are better than others. In GECCO 2007: Proceedings of the Genetic and Evolutionary Computation Conference (pp. 773–780). New York, NY: ACM.
  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Weinheim: Wiley.
  • Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach. IEEE Transactions on Evolutionary Computation, 18(4), 577–601. doi:10.1109/TEVC.2013.2281535
  • Deb, K., Mohan, M., & Mishra, S. (2003). Towards a quick computation of well-spread Pareto-optimal solutions. In Evolutionary multi-criterion optimization (pp. 222–236). Heidelberg: Springer.
  • Deb, K., Mohan, M., & Mishra, S. (2005). Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation, 13, 501–525.
  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.
  • Deb, K., & Saxena, D. (2006). Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In Proceedings of the World Congress on Computational Intelligence (WCCI-2006), pp. 3352–3360. Piscataway, NY: IEEE.
  • Deb, K., Sindhya, K., & Okabe, T. (2007). Self-adaptive simulated binary crossover for real-parameter optimization. In GECCO 2007: Proceedings of the Genetic and Evolutionary Computation Conference (pp. 1187–1194). London: ACM.
  • Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.
  • Eiben, A.E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2), 124–141.
  • Emmerich, M., Beume, N., & Naujoks, B. (2005). An EMO algorithm using the hypervolume measure as selection criterion. In Evolutionary multi-criterion optimization (pp. 62–76). Berlin: Springer.
  • Fonseca, C., & Fleming, P. (1993). Genetic algorithms for multiobjective optimization: Formulation discussion and generalization. In Proceedings of the 5th International Conference on Genetic Algorithms (pp. 416–423). New York, NY: Morgan Kaufmann Publishers.
  • Fonseca, C., & Fleming, P. (1998). Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 28(1), 26–37.
  • Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Boston, MA: Addison-wesley.
  • Hadka, D., & Reed, P. (2012). Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization. Evolutionary Computation, 20(3), 423–452.
  • Huband, S., Hingston, P., Barone, L., & While, L. (2006). A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 10, 477–506.
  • Hughes, E. (2003). Multiple single objective Pareto sampling. In Evolutionary computation (CEC), 2003 IEEE Congress on (pp. 2678–2684). Piscataway, NY: IEEE.
  • Hughes, E. (2005). Evolutionary many-objective optimisation: Many once or one many? In Evolutionary computation (CEC), 2005 IEEE Congress on (pp. 222–227). Piscataway, NY: IEEE.
  • Ishibuchi, H., Tsukamoto, N., & Nojima, Y. (2008). Evolutionary many-objective optimization: A short review. In Evolutionary computation (CEC), 2008 IEEE Congress on (pp. 2419–2426). Piscataway, NY: IEEE.
  • Li, M., Yang, S., & Liu, X. (2014). Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Transactions on Evolutionary Computation, 18(3), 348–365.
  • Lygoe, R.J., Cary, M., & Fleming, P.J. (2010). A many-objective optimisation decision-making process applied to automotive diesel engine calibration. Simulated evolution and learning (pp. 638–646). Berlin: Springer.
  • Murata, T., Ishibuchi, H., & Gen, M. (2001). Specification of genetic search directions in cellular multi-objective genetic algorithms. In E. Zitzler, K. Deb, L. Thiele, C.A.C. Coello, and D. Corne (Eds.), Evolutionary multi-criterion optimization (pp. 82–95). Berlin: Springer.
  • Purshouse, R., & Fleming, P. (2003a). An adaptive divide-and-conquer methodology for evolutionary multi-criterion optimisation. Evolutionary multi-criterion optimization (pp. 72–72). Berlin: Springer.
  • Purshouse, R., & Fleming, P. (2003b). Evolutionary many-objective optimisation: An exploratory analysis. In Evolutionary computation (CEC), 2003 IEEE Congress on (pp. 2066–2073). Piscataway, NY: IEEE.
  • Purshouse, R., & Fleming, P. (2007). On the evolutionary optimization of many conflicting objectives. IEEE Transactions on Evolutionary Computation, 11, 770–784.
  • Purshouse, R., Jalbǎ, C., & Fleming, P. (2011). Preference-driven co-evolutionary algorithms show promise for many-objective optimisation. In Evolutionary multi-criterion optimization (pp. 136–150). Berlin: Springer.
  • Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications, 145(2), 280–297.
  • Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181(2), 259–270.
  • Sheridan, R. (2008). Alternative global goodness metrics and sensitivity analysis: Heuristics to check the robustness of conclusions from studies comparing virtual screening methods. Journal of chemical information and modeling, 48(2), 426–433.
  • Sobol, I. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and computers in simulation, 55(1-3), 271–280.
  • Sobol, I., & Kucherenko, S. (2005). On global sensitivity analysis of quasi-Monte Carlo algorithms. Monte Carlo Methods and Applications, 11(1), 83–92.
  • Sobol, I.M. (1993). Sensitivity analysis for non-linear mathematical models. Mathematical Modelling and Computational Experiment, 1(1), 407–414.
  • Tang, Y., Reed, P., Wagener, T., Van Werkhoven, K. (2007). Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrology and Earth System Sciences, 11(2), 793–817.
  • Wang, R., Purshouse, R., & Fleming, P. (2012). Local preference-inspired co-evolutionary algorithms. In GECCO 2012: Proceedings of the Genetic and Evolutionary Computation Conference (pp. 513–520). New York, NY: ACM.
  • Wang, R., Purshouse, R., & Fleming, P. (2013a). On finding well-spread Pareto optimal solutions by preference-inspired co-evolutionary algorithm. In GECCO 2013: Proceedings of the Genetic and Evolutionary Computation Conference (pp. 695–702). New York, NY: ACM.
  • Wang, R., Purshouse, R., & Fleming, P. (2013b). Preference-inspired co-evolutionary algorithm using weights for many-objective optimisation. In GECCO 2013: Proceedings of the Genetic and Evolutionary Computation Conference (pp. 101–102). New York, NY: ACM.
  • Wang, R., Purshouse, R., & Fleming, P. (2013c). Preference-inspired co-evolutionary algorithms for many-objective optimisation. IEEE Transactions on Evolutionary Computation, 17(4), 474–494.
  • Wang, R., Purshouse, R., & Fleming, P. (2013d). “Whatever works best for you” – a new method for a priori and progressive multi-objective optimisation. In R.C. Purshouse, P.J. Fleming, C.M. Fonseca, S. Greco, & J. Shaw (Eds.), Evolutionary multi-criterion optimization (pp. 337–351). Berlin: Springer.
  • Wang, R., Purshouse, R.C., & Fleming, P.J. (2013e). Preference-inspired co-evolutionary algorithm using adaptively generated goal vectors. In Evolutionary computation (CEC), 2013 IEEE Congress on (pp. 916–923). Piscataway, NY: IEEE.
  • Wang, R., Purshouse, R., & Fleming, P. (in press). Preference-inspired co-evolutionary algorithms using weight vectors. European Journal of Operational Research.
  • Yang, S., Li, M., Liu, X., & Zheng, J. (2013). A grid-based evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 17(5), 721–736.
  • Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.
  • Zitzler, E., & Künzli, S. (2004). Indicator-based selection in multiobjective search. In Parallel problem solving from nature – PPSN VIII (pp. 832–842). Berlin: Springer.
  • Zitzler, E., Laumanns, M., & Thiele, L. (2002). SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. Evolutionary Methods for Design Optimisation and Control with Application to Industrial Problems EUROGEN 2001, 3242(103), 95–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.