161
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach

, , &
Pages 557-566 | Received 22 Nov 2016, Accepted 12 Nov 2017, Published online: 21 Dec 2017

References

  • Chae, S., & Nguang, S. K. (2014, July). SOS based robust H∞ fuzzy dynamic output feedback control of nonlinear networked control systems. Cybernetics, IEEE Transactions on, 44(7), 1204–1213.
  • Chen, Y., Tanaka, M., Tanaka, K., & Wang, H. (2015). Stability analysis and region-of-attraction estimation using piecewise polynomial Lyapunov functions: Polynomial fuzzy model approach. Fuzzy Systems, IEEE Transactions on, 23(4), 1314–1322.
  • Chen, Y.-J., Tanaka, M., Tanaka, K., Ohtake, H., & Wang, H. (2014, March). Discrete polynomial fuzzy systems control. Control Theory Applications, IET, 8(4), 288–296.
  • Feng, G. (2004, February). Stability analysis of discrete-time fuzzy dynamic systems based on piecewise Lyapunov functions. Fuzzy Systems, IEEE Transactions on, 12(1), 22–28.
  • Feng, G. (2006, Oct). A survey on analysis and design of model-based fuzzy control systems. Fuzzy Systems, IEEE Transactions on, 14(5), 676–697.
  • Gassara, H., El Hajjaji, A., & Chaabane, M. (2017). Design of polynomial fuzzy observer controller for nonlinear systems with state delay: Sum of squares approach. International Journal of Systems Science, 48(9), 1954–1965. Retrieved from http://dx.doi.org/10.1080/00207721.2017.1299813
  • Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Upper Saddle, New Jersey, USA: Prentice Hall.
  • Kruszewski, A., Wang, R., & Guerra, T. (2008, March). Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time T-S fuzzymodels: A new approach. Automatic Control, IEEE Transactions on, 53(2), 606–611.
  • Lam, H. (2011, June). Polynomial fuzzy-model-based control systems: Stability analysis via piecewiselinear membership functions. Fuzzy Systems, IEEE Transactions on, 19(3), 588–593.
  • Lam, H. (2012, February). Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42(1), 258–267.
  • Lam, H., & Li, H. (2013, December). Output-feedback tracking control for polynomial fuzzy-model-based control systems. Industrial Electronics, IEEE Transactions on, 60(12), 5830–5840.
  • Lam, H., & Lo, J. (2013, April). Output regulation of polynomial-fuzzy-model-based control systems. Fuzzy Systems, IEEE Transactions on, 21(2), 262–274.
  • Lam, H., Narimani, M., Li, H., & Liu, H. (2013, October). Stability analysis of polynomial-fuzzy-model-based control systems using switching polynomial Lyapunov function. Fuzzy Systems, IEEE Transactions on, 21(5), 800–813.
  • Lam, H., & Seneviratne, L. (2011, October). Stability analysis of polynomial fuzzy-model-based control systems under perfect/imperfect premise matching. Control Theory Applications, IET, 5(15), 1689–1697.
  • Lam, H., Seneviratne, L., & Ban, X. (2012, July). Fuzzy control of non-linear systems using parameter dependent polynomial fuzzy model. Control Theory Applications, IET, 6(11), 1645–1653.
  • Lofberg, J. (2009, May). Pre- and post-processing sum-of-squares programs in practice. Automatic Control, IEEE Transactions on, 54(5), 1007–1011.
  • Narimani, M., & Lam, H. (2010, October). SOS-based stability analysis of polynomial fuzzy-model-based control systems via polynomial membership functions. Fuzzy Systems, IEEE Transactions on, 18(5), 862–871.
  • Nguang, S. K., & Shi, P. (2003). Fuzzy H1 output feedback control of nonlinear systems under sampled measurements. Automatica, 39(12), 2169–2174.
  • Nguang, S. K., Shi, P., & Ding, S. (2007, December). Fault detection for uncertain fuzzy systems: An LMI approach. Fuzzy Systems, IEEE Transactions on, 15(6), 1251–1262.
  • Papachristodoulou, A., & Prajna, S. (2005, June). A tutorial on sum of squares techniques for systems analysis. In American control conference, 2005. proceedings of the 2005 (Vol. 4, pp. 2686–2700).Portland, OR, USA: IEEE.
  • Parrilo, P. A. (2000). Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization ( Unpublished doctoral dissertation). California Institute of Technology, Pasadena, CA.
  • Pitarch, J. L., Sala, A., Lauber, J., & Guerra, T. M. (2016). Control synthesis for polynomial discrete-time systems under input constraints via delayed-state Lyapunov functions. International Journal of Systems Science, 47(5), 1176–1184. Retrieved from http://dx.doi.org/10.1080/00207721.2014.915357
  • Prajna, S., Papachristodoulou, A., & Parrilo, P. (2002, December). Introducing SOSTOOLS: A general purpose sum of squares programming solver. In Decision and control, 2002, proceedings of the 41st ieee conference on (Vol. 1, pp. 741–746 vol.1).Las Vegas, USA: IEEE.
  • Prajna, S., Papachristodoulou, A., & Wu, F. (2004, July). Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach. In Control conference, 2004. 5th asian (Vol. 1, pp. 157–165 Vol. 1). Melbourne, Australia: IEEE.
  • Saat, S., Huang, D., Nguang, S. K., & Hamidon, A. (2013, September). Nonlinear state feedback control for a class of polynomial nonlinear discrete-time systems with norm-bounded uncertainties: An integrator approach. Journal of the Franklin Institute, 350(7), 1739–1752.
  • Sala, A., & Ario, C. (2009, December). Polynomial fuzzy models for nonlinear control: A taylor series approach. Fuzzy Systems, IEEE Transactions on, 17(6), 1284–1295.
  • Seuret, A., & Gouaisbaut, F. (2013). Wirtinger-based integral inequality: Application to time-delay systems. Automatica, 49(9), 2860–2866.
  • Slotine, J., & Li, W. (1991). Applied nonlinear control. Englewood Cliffs, New Jersey: Prentice Hall.
  • Stephen Boyd, E. F., Laurent El Ghaoui, & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia: Society for Industrial and Applied Mathematics (SIAM).
  • Tanaka, K., Ohtake, H., Seo, T., Tanaka, M., & Wang, H. (2012, October). Polynomial fuzzy observer designs: A sum-of-squares approach. Systems,Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42(5), 1330–1342.
  • Tanaka, K., Ohtake, H., & Wang, H. (2009, April). Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 39(2), 561–567.
  • Tanaka, K., & Wang, H. O. (2001). Fuzzy control systems design and analysis: A linear matrix inequality approach. New York, NY: Wiley.
  • Tanaka, K., Yoshida, H., Ohtake, H., & Wang, H. (2007, July). A sum of squares approach to stability analysis of polynomial fuzzy systems. In American control conference (pp. 4071–4076).New York, USA: IEEE.
  • Tanaka, K., Yoshida, H., Ohtake, H., & Wang, H. (2009, August). A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. Fuzzy Systems, IEEE Transactions on, 17(4), 911–922.
  • Tuan, H., Apkarian, P., Narikiyo, T., & Yamamoto, Y. (2001). Parameterized linear matrix inequality techniques in fuzzy control system design. Fuzzy Systems, IEEE Transactions on, 9(2), 324–332.
  • Yu, G.-R., Huang, Y.-C., & Cheng, C.-Y. (2016). Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm. International Journal of Systems Science, 47(9), 2225–2236. Retrieved from http://dx.doi.org/10.1080/00207721.2014.983209
  • Wang, Y., Zhang, H., Zhang, J., & Wang, Y. (2015). An SOS-Based observer design for discrete-time polynomial fuzzy systems. International Journal of Fuzzy Systems, 17(1), 94–104.
  • Wang, W.-J., Chen, Y.-J., & Sun, C.-H. (2007, June). Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise. Lyapunov function Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(3), 551–559.
  • Xie, X., Yue, D., Ma, T., & Zhu, X. (2014, December). Further studies on control synthesis of discrete-time t-s fuzzy systems via augmentedmulti-indexedmatrix approach. IEEE Transactions on Cybernetics, 44(12), 2784–2791.
  • Xie, X., Yue, D., Zhang, H., & Xue, Y. (2016, March). Control synthesis of discrete-time t-s fuzzy systems via a multi-instant homogenous polynomial approach. IEEE Transactions on Cybernetics, 46(3), 630–640.
  • Zhang, H., Wei, Q., & Luo, Y. (2008, August). A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(4), 937–942.
  • Zhang, H., & Liu, D. (2006). Fuzzy modeling and fuzzy control. Basel: Birkhauser Basel.
  • Zheng, Y., Fang, H., & Wang, H. (2006, August). Takagi-Sugeno fuzzy-model-based fault detection for networked control systems with markov delays. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 36(4), 924–929.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.