269
Views
14
CrossRef citations to date
0
Altmetric
Articles

Stochastic stability analysis for neutral-type Markov jump neural networks with additive time-varying delays via a new reciprocally convex combination inequality

, , &
Pages 970-988 | Received 08 Jun 2018, Accepted 18 Feb 2019, Published online: 17 Mar 2019

References

  • Boyd, S., Ghaoui, L. E., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia: SIAM Studies in Applied Mathematics.
  • Chen, H., Shi, K., Zhong, S., & Liu, X. (2018). Error state convergence on master–slave generalized uncertain neural networks using robust nonlinear h∞ control theory. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–14.
  • Chen, W., & Wang, L. (2013). Delay-dependent stability for neutral-type neural networks with time-varying delays and Markovian jumping parameters. Neurocomputing, 120, 569–576. doi: 10.1016/j.neucom.2013.04.013
  • Cheng, J., Park, J. H., Karimi, H. R., & Zhao, X. (2017). Static output feedback control of nonhomogeneous Markovian jump systems with asynchronous time delays. Information Sciences, 399, 219–238. doi: 10.1016/j.ins.2017.03.009
  • Cheng, J., & Xiong, L. (2015). Improved integral inequality approach on stabilization for continuous-time systems with time-varying input delay. Neurocomputing, 160, 274–280. doi: 10.1016/j.neucom.2015.02.026
  • Dharani, S., Rakkiyappan, R., & Cao, J. (2015). New delay-dependent stability criteria for switched Hopfield neural networks of neutral type with additive time-varying delay components. Neurocomputing, 151, 827–834. doi: 10.1016/j.neucom.2014.10.014
  • Jiao, J. (2015). Improved stability criteria for neural networks with additive time-varying delay components. International Journal of Control and Automation, 8(17), 3365–3375.
  • Johansson, K. H. (2000). The quadruple-tank process: A multivariable laboratory process with an adjustable zero. IEEE Transactions on Control Systems Technology, 8(3), 456–465. doi: 10.1109/87.845876
  • Kao, Y., Wang, C., Xie, J., Karimi, H. R., & Li, W. (2015). h∞ sliding mode control for uncertain neutral-type stochastic systems with Markovian jumping parameters. Information Sciences, 314, 200–211. doi: 10.1016/j.ins.2015.03.047
  • Kao, Y., Xie, J., Wang, C., & Karimi, H. R. (2015). A sliding mode approach to h∞ non-fragile observer-based control design for uncertain Markovian neutral-type stochastic systems. Automatica, 52, 218–226. doi: 10.1016/j.automatica.2014.10.095
  • Karimi, H. R. (2011). Robust delay-dependent h∞ control of uncertain time-delay systems with mixed neutral, discrete, and distributed time-delays and Markovian switching parameters. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(8), 1910–1923. doi: 10.1109/TCSI.2011.2106090
  • Karimi, H. R. (2012). A sliding mode approach to h∞ synchronization of master–slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties. Journal of the Franklin Institute, 349(4), 1480–1496. doi: 10.1016/j.jfranklin.2011.09.015
  • Kushner, H. J. (1967). Stochastic stability and control. Mathematics in Science and Engineering A, 33, 350.
  • Lee, T. H., Park, J. H., Park, M.-J., Kwon, O.-M., & Jung, H.-Y. (2015). On stability criteria for neural networks with time-varying delay using wirtinger-based multiple integral inequality. Journal of the Franklin Institute, 352(12), 5627–5645. doi: 10.1016/j.jfranklin.2015.08.024
  • Liu, Y., Wang, Z., & Liu, X. (2012). Stability analysis for a class of neutral-type neural networks with Markovian jumping parameters and mode-dependent mixed delays. Neurocomputing, 94, 46–53. doi: 10.1016/j.neucom.2012.04.003
  • Manivannan, R., Samidurai, R., Cao, J., & Alsaedi, A. (2016). New delay-interval-dependent stability criteria for switched hopfield neural networks of neutral type with successive time-varying delay components. Cognitive Neurodynamics, 10(6), 543–562. doi: 10.1007/s11571-016-9396-y
  • Mao, X. (1999). Stability of stochastic differential equations with Markovian switching. Stochastic Processes and their Applications, 79(1), 45–67. doi: 10.1016/S0304-4149(98)00070-2
  • Moon, Y. S., Park, P., Kwon, W. H., & Lee, Y. S. (2001). Delay-dependent robust stabilization of uncertain state-delayed systems. International Journal of Control, 74(14), 1447–1455. doi: 10.1080/00207170110067116
  • Muthukumar, P., & Subramanian, K. (2016). Stability criteria for Markovian jump neural networks with mode-dependent additive time-varying delays via quadratic convex combination. Neurocomputing, 205(5), 75–83. doi: 10.1016/j.neucom.2016.03.058
  • Park, P., & Ko, J. W. (2007). Stability and robust stability for systems with a time-varying delay. Automatica, 43(10), 1855–1858. doi: 10.1016/j.automatica.2007.02.022
  • Park, P., Ko, J. W., & Jeong, C. (2011). Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 47(1), 235–238. doi: 10.1016/j.automatica.2010.10.014
  • Park, P., Lee, W., & Lee, S. (2015). Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. Journal of the Franklin Institute, 352, 1378–1396. doi: 10.1016/j.jfranklin.2015.01.004
  • Rakkiyappan, R., Sivasamy, R., Ju, H. P., & Lee, T. H. (2016). An improved stability criterion for generalized neural networks with additive time-varying delays. Neurocomputing, 171, 615–624. doi: 10.1016/j.neucom.2015.07.004
  • Rawat, A., Yadav, R., & Shrivastava, S. (2012). Neural network applications in smart antenna arrays: A review. AEU-International Journal of Electronics and Communications, 66(11), 903–912. doi: 10.1016/j.aeue.2012.03.012
  • Sakthivel, R., Karimi, H. R., Joby, M., & Santra, S. (2017). Resilient sampled-data control for Markovian jump systems with an adaptive fault-tolerant mechanism. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(11), 1312–1316. doi: 10.1109/TCSII.2017.2669102
  • Samidurai, R., & Manivannan, R. (2016). Delay-range-dependent passivity analysis for uncertain stochastic neural networks with discrete and distributed time-varying delays. Neurocomputing, 185, 191–201. doi: 10.1016/j.neucom.2015.12.056
  • Samidurai, R., Manivannan, R., Ahn, C. K., & Karimi, H. R. (2018). New criteria for stability of generalized neural networks including Markov jump parameters and additive time delays. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(4), 485–499. doi: 10.1109/TSMC.2016.2609147
  • Samidurai, R., Rajavel, S., Sriraman, R., Cao, J., Alsaedi, A., & Alsaadi, F. E. (2017). Novel results on stability analysis of neutral-type neural networks with additive time-varying delay components and leakage delay. International Journal of Control Automation and Systems, 15(4), 1888–1900. doi: 10.1007/s12555-016-9483-1
  • Senthilraj, S., Raja, R., Jiang, F., Zhu, Q., & Samidurai, R. (2016). New delay-interval-dependent stability analysis of neutral type bam neural networks with successive time delay components. Neurocomputing, 171, 1265–1280. doi: 10.1016/j.neucom.2015.07.060
  • Seuret, A., & Gouaisbaut, F. (2017). Allowable delay sets for the stability analysis of linear time-varying delay systems using a delay-dependent reciprocally convex lemma. IFAC-PapersOnLine, 50(1), 1275–1280 (20th IFAC World Congress). doi: 10.1016/j.ifacol.2017.08.131
  • Seuret, A., Liu, K., & Gouaisbaut, F. (2018). Generalized reciprocally convex combination lemmas and its application to time-delay systems. Automatica, 95, 488–493. doi: 10.1016/j.automatica.2018.06.017
  • Shao, H., & Han, Q. L. (2011). New delay-dependent stability criteria for neural networks with two additive time-varying delay components. World Academy of Science Engineering and Technology, 22(5), 812–818.
  • Shi, K., Tang, Y., Zhong, S., Yin, C., Huang, X., & Wang, W. (2018). Nonfragile asynchronous control for uncertain chaotic Lurie network systems with Bernoulli stochastic process. International Journal of Robust and Nonlinear Control, 28(5), 1693–1714. doi: 10.1002/rnc.3980
  • Shi, K., Wang, J., Zhong, S., Zhang, X., Liu, Y., & Cheng, J. (2019). New reliable nonuniform sampling control for uncertain chaotic neural networks under Markov switching topologies. Applied Mathematics and Computation, 347, 169–193. doi: 10.1016/j.amc.2018.11.011
  • Skorokhod, A. V. (1989). Asymptotic methods in the theory of stochastic differential equations. Rhode Island: American Mathematical Society.
  • Wang, J., Shi, K., Huang, Q., Zhong, S., & Zhang, D. (2018). Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout. Applied Mathematics and Computation, 335, 211–230. doi: 10.1016/j.amc.2018.04.038
  • Waszczyszyn, Z., & Ziemiański, L. (2001). Neural networks in mechanics of structures and materials – new results and prospects of applications. Computers and Structures, 79(22–25), 2261–2276. doi: 10.1016/S0045-7949(01)00083-9
  • Xia, J., Ju, H. P., & Zeng, H. (2015). Improved delay-dependent robust stability analysis for neutral-type uncertain neural networks with Markovian jumping parameters and time-varying delays. Neurocomputing, 149, 1198–1205. doi: 10.1016/j.neucom.2014.09.008
  • Xiao, N., & Jia, Y. (2013). New approaches on stability criteria for neural networks with two additive time-varying delay components. Neurocomputing, 118(11), 150–156. doi: 10.1016/j.neucom.2013.02.028
  • Xiong, L., Tian, J., & Liu, X. (2012). Stability analysis for neutral Markovian jump systems with partially unknown transition probabilities. Journal of the Franklin Institute, 349(6), 2193–2214. doi: 10.1016/j.jfranklin.2012.04.003
  • Xiong, L., Zhang, H., Li, Y., & Liu, Z. (2016). Improved stability and h∞ performance for neutral systems with uncertain Markovian jump. Nonlinear Analysis: Hybrid Systems, 19, 13–25.
  • Yin, C., Cheng, Y., Huang, X., Zhong, S. M., Li, Y., & Shi, K. (2016). Delay-partitioning approach design for stochastic stability analysis of uncertain neutral-type neural networks with Markovian jumping parameters. Neurocomputing, 207, 437–449. doi: 10.1016/j.neucom.2016.05.025
  • Zhang, X., Han, Q., Seuret, A., & Gouaisbaut, F. (2017). An improved reciprocally convex inequality and an augmented Lyapunovc–Krasovskii functional for stability of linear systems with time-varying delay. Automatica221–226. doi: 10.1016/j.automatica.2017.04.048
  • Zhang, X., Han, Q., Wang, Z., & Zhang, B. (2017). Neuronal state estimation for neural networks with two additive time-varying delay components. IEEE Transactions on Cybernetics, PP(99), 1–11. doi: 10.1109/TCYB.2017.2743003
  • Zhang, C., He, Y., Jiang, L., Wu, M., & Wang, Q. (2017). An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica481–485. doi: 10.1016/j.automatica.2017.07.056
  • Zhou, Q., Shi, P., Xu, S., & Li, H. (2013). Observer-based adaptive neural network control for nonlinear stochastic systems with time delay. IEEE Transactions on Neural Networks and Learning Systems, 24(1), 71–80. doi: 10.1109/TNNLS.2012.2223824
  • Zhuang, G., Ma, Q., Zhang, B., Xu, S., & Xia, J. (2018). Admissibility and stabilization of stochastic singular Markovian jump systems with time delays. Systems and Control Letters, 114, 1–10. doi: 10.1016/j.sysconle.2018.02.004
  • Zhuang, G., Xia, J., Zhang, B., & Sun, W. (2017). Robust normalisation and p–d state feedback control for uncertain singular Markovian jump systems with time-varying delays. IET Control Theory and Applications, 12(3), 419–427. doi: 10.1049/iet-cta.2017.0585
  • Zhuang, G., Xia, J., Zhang, W., Sun, W., & Sun, Q. (2018). Normalisation design for delayed singular Markovian jump systems based on system transformation technique. International Journal of Systems Science, 49, 1603–1614. doi: 10.1080/00207721.2018.1463411

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.