609
Views
9
CrossRef citations to date
0
Altmetric
Regular papers

H2/H formulation of LQR controls based on LMI for continuous-time uncertain systems

ORCID Icon, ORCID Icon & ORCID Icon
Pages 612-634 | Received 02 Jun 2020, Accepted 04 Oct 2020, Published online: 24 Oct 2020

References

  • Bayat, F., Karimi, M., & Taheri, A. (2019). Robust output regulation of Zeta converter with load/input variations: LMI approach. Control Engineering Practice, 84, 102–111. https://doi.org/10.1016/j.conengprac.2018.10.023
  • Beteto, M. A. L., Assunção, E., Teixeira, M. C. M., Silva, E. R. P., Buzachero, L. F. S., & Caun, R. P. (2018). New design of robust LQR-state derivative controllers via LMIs. 9th IFAC symposium on robust control design and 2nd IFAC workshop on linear parameter varying systems, 1, Florianópolis, Brasil (pp. 612–617).
  • Bouarar, T., Guelton, K., & Manamanni, N. (2010). Robust fuzzy Lyapunov stabilization for uncertain and disturbed Takagi-Sugeno descriptors. ISA Transactions, 49(4), 447–461. https://doi.org/10.1016/j.isatra.2010.06.003
  • Boyd, S., Feron, E., Ghaouih, L., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory (193 pp). Society for Industrial and Applied Mathematics. Retrieved October 30, 2019, from http://web.stanford.edu/boyd/lmibook/
  • Capron, B. D. O., & Odloak, D. (2018). A robust LQR-MPC control strategy with input constraints and control zones. Journal of Process Control, 64, 89–99. https://doi.org/10.1016/j.jprocont.2018.02.008
  • Caun, R. P., Assunção, E., Teixeira, M. C. M., & Caun, A. P. (2018). LQR-LMI control applied to convex-bounded domains. Cogent Engineering, 5(1), 1–27. https://doi.org/10.1080/23311916.2018.1457206.
  • Chakraborty, S., & Ray-Chaudhuri, S. (2017). Equivalence of optimal gain between H2 norm minimization and LQR control of a linear system. Journal of Engineering Mechanic, 143, 1–3. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001218
  • Das, S., Pan, I., & Das, S. (2015). Multi-objective LQR with optimum weight selection to design FOPID controllers for delayed fractional order processes. ISA Transactions, 58, 35–49. https://doi.org/10.1016/j.isatra.2015.06.002
  • Dongmei, Z., Xingang, W., & Li, M. (2012). Consensus for multi-agent dynamic systems: An LQR perspective. Chinese control conference, Hefei, China (pp. 6261–6266).
  • Du, H., Lam, J., & Sze, K. Y. (2003). Non-fragile output feedback H∞ vehicle suspension control using genetic algorithm. Engineering Applications of Artificial Intelligence, 16(7–8), 667–680. https://doi.org/10.1016/j.engappai.2003.09.008
  • Du, H., Lam, J., & Sze, K. Y. (2005). Design of non-fragile H∞ controller for active vehicle suspensions. Journal of Vibration and Control, 11(2), 225–243. https://doi.org/10.1177/1077546305049392
  • Fard, M., & Aldeen, M. (2016). Linear quadratic regulator design for a hybrid photovoltaic-battery system. Australian control conference, Newcastle, Australia (pp. 347–352).
  • Ge, M., Chiu, M., & Wang, O. (2002). Robust PID controller design via LMI approach. Journal of Process Control, 12(1), 3–13. https://doi.org/10.1016/S0959-1524(00)00057-3
  • Gonçalves, E. N., Palhares, R. M., & Takahashi, R. H. C. (2008). A novel approach for H2/H∞ robust PID synthesis for uncertain systems. Journal of Process Control, 18(1), 19–26. https://doi.org/10.1016/j.jprocont.2007.06.003
  • Gupta, R., Bandyopadhyay, B., & Kulkarni, A. M. (2003, March). Design of power system stabiliser for single-machine system using robust periodic output feedback controller. IEE Proceedings - Generation, Transmission and Distribution, 150(2), 211–216. https://doi.org/10.1049/ip-gtd:20030113
  • Hmidi, R., Brahim, A. B., Hmida, F. B., & Sellami, A. (2018). Robust fault tolerant control for lipschitz nonlinear systems with simultaneous actuator and sensor faults. International conference on advanced systems and electric technologies - ICASET, Hammamet, Tunisia (pp. 277–283).
  • Hrovat, D. (1997). Survey of advanced suspension developments and related optimal control applications. Automatica, 33(10), 1781–1817. https://doi.org/10.1016/S0005-1098(97)00101-5
  • Huang, H., Li, D., & Xi, Y. (2012). The improved robust model predictive control with mixed H2/H∞‌ control approach. Acta Automatica Sinica, 38(6), 944–949. https://doi.org/10.1016/S1874-1029(11)60296-6
  • Huang, Y., Sun, C., Wang, L., & Xia, J. (2011). Mixed LQR/H∞ non-fragile control with regional pole placement for flight kinematics system. Chinese control and decision conference, Mianyang, China (pp. 1410–1414).
  • Huang, Y., Sun, C., Xue, L., & Yang, W. (2013). Multi-objective switching tracking control for a flexible air-breathing hypersonic vehicle. Chinese control conference, Xi'an, China (pp. 5414–5419).
  • Ishimaru, M., Yokoyama, R., Shirai, G., & Niimura, T. (2002). Robust thyristor-controlled series capacitor controller design based on linear matrix inequality for a multi-machine power system. International Journal of Electrical Power & Energy Systems, 24(8), 621–629. https://doi.org/10.1016/S0142-0615(01)00074-6
  • Jiwei, L., Dewei, L., Yugeng, X., & Jianbo, L. (2013). Mixed H2/H∞ model predictive control for systems with energy-bounded disturbance. Chinese control conference, Xi'an, China (pp. 4052–4056).
  • Kanev, S., & Verhaegen, M. (2002). Reconfigurable robust fault-tolerant control and state estimation. IFAC Proceedings Volumes, 35(1), 95–100. https://doi.org/10.3182/20020721-6-ES-1901.00747
  • Keel, L. H., & S. P. Bhattacharyya (1997). Robust, fragile, or optimal? IEEE Transactions on Automatic Control, 42(8), 1098–1105. https://doi.org/10.1109/9.618239
  • Ko, H. S., Dumont, G. A., Jatskevich, J., & Moshref, A. (2006). A new LMI representation of LQR based voltage control of grid-connected wind farm. American control conference, Minneapolis, USA (pp. 851–856).
  • Ko, H. S., Jatskevich, J., Dumont, G., & Yoon, G. (2008). An advanced LMI-based-LQR design for voltage control of grid-connected wind farm. Electric Power Systems Research, 78(4), 539–546. https://doi.org/10.1016/j.epsr.2007.04.009
  • Koroishi, E. H., Lara-Molina, F. A., Borges, A. S., & Jr, V. S. (2016). Robust control in rotating machinery using linear matrix inequalities. Journal of Vibration and Control, 22(17), 3767–3778. https://doi.org/10.1177/1077546314565686
  • Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. IEEE international conference on robotics and automation, New Orleans, USA (pp. 284–289).
  • Mahmoud, M. S., Alyazidi, N. M., & Abouheaf, M. I. (2017). Adaptive intelligent techniques for microgrid control systems: A survey. International Journal of Electrical Power & Energy Systems, 90, 292–305. https://doi.org/10.1016/j.ijepes.2017.02.008
  • Makila, P. M., Keel, L. H., & Bhattacharyya, S. P. (1998). Comments on ‘robust, fragile, or optimal?’ IEEE Transactions on Automatic Control, 43(9), 1265–1268. https://doi.org/10.1109/9.718613
  • Menhour, L., Charara, A., & Lechner, D. (2014). Switched LQR/H∞ steering vehicle control to detect critical driving situations. Control Engineering Practice, 24, 1–14. https://doi.org/10.1016/j.conengprac.2013.11.007
  • Montagner, V. F., & Dupont, F. H. (2010). A robust LQR applied to a boost converter with response optimized using a genetic algorithm. XVIII congresso brasileiro de automática, Bonito, Brazil (pp. 2297–2302).
  • Montagner, V. F., Oliveira, R. C. L. F., Leite, V. J. S., & Peres, P. L. D. (2005). Gain scheduled state feedback control of discrete systems with time-varying uncertainties: an LMI approach. 44th IEEE conference on decision and control, 44, and European control conference ECC, Seville, Espanha (pp. 4305–4310).
  • Niel, F., Seuret, A., Zaccarian, L., & Fagley, C. (2017). Robust LQR control for stall flutter suppression: A polytopic approach. IFAC-PapersOnLine, 50(1), 11367–11372. https://doi.org/10.1016/j.ifacol.2017.08.2041
  • Olalla, C., Leyva, R., El Aroudi, A., & Queinnec, I. (2009). Robust LQR control for PWM converters: An LMI approach. IEEE Transactions on Industrial Electronics, 56(7), 2548–2558. https://doi.org/10.1109/TIE.2009.2017556
  • Orukpe, P. E., & Jaimoukha, I. M. (2009, August). Robust model predictive control based on mixed H2/H∞ control approach. European control conference, Budapest, Hungary (pp. 2223–2228).
  • Orukpe, P. E., Jaimoukha, I. M., & El-Zobaidi, H. M. H. (2007). Model predictive control based on mixed H2/H∞ control approach. IEEE American control conference, New York, USA (pp. 6147–6150).
  • Osório, C. R. D., Koch, G. G., Oliveira, R. C. L. F., & Montagner, V. F. (2019). A practical design procedure for robust H2 controllers applied to grid-connected inverters. Control Engineering Practice, 92, 104157. https://doi.org/10.1016/j.conengprac.2019.104157
  • Pandey, S. K., Mohanty, S. R., Kishor, N., & Catalão, J. P. S. (2013). An advanced LMI-based-LQR design for load frequency control of an autonomous hybrid generation system. In L. M. Camarinha-Matos, S. Tomic, & P. Graça (Eds.), Technological innovation for the internet of things (Vol. 394, pp. 371–381). Berlin, Heidelberg: Springer.
  • Pandey, S. K., Mohanty, S. R., Kishor, N., & Catalão, J. P. S. (2014). Frequency regulation in hybrid power systems using particle swarm optimization and linear matrix inequalities based robust controller design. International Journal of Electrical Power & Energy Systems, 63, 887–900. https://doi.org/10.1016/j.ijepes.2014.06.062
  • Pourshaghaghi, H. R., Jahed-Motlagh, M. R., Montazer, A., Poshtan, J., & A. A. Jalali (2007). Optimized multiobjective H∞ control applied to inverted pendulum. Annual conference of the IEEE industrial electronics society, Taipei, Taiwan (pp. 938–943).
  • Quanser. (2009). Active Suspension - User's Manual. Ontario, Canada.
  • Ramos, R. A., Alberto, L. F. C., & Bretas, N. G. (2004). A new LMI-based procedure for the design of robust damping controllers for power systems. IEEE conference on decision and control, Nassau, Bahamas (pp. 4467–4472).
  • Salhi, S., & Salhi, S. (2019). LQR control of a grid side converter of a DFIG based WECS: LMI approach based on Lyapunov condition. 16th international multi-conference on systems, signals & devices (SSD), Istanbul, Turkey (pp. 595–600).
  • Sivanandakumar, D., & Ramakrishnan, K. (2006). LMI based digital state feedback controller for a wound rotor induction drive with guaranteed closed loop stability. International conference on power electronic, drives and energy systems, New Delhi, India (pp. 1–6).
  • Soliman, H. M., Dabroum, A., Mahmoud, M. S., & Soliman, M. (2011). Guaranteed-cost reliable control with regional pole placement of a power system. Journal of the Franklin Institute, 348(5), 884–898. https://doi.org/10.1016/j.jfranklin.2011.02.013
  • Taghavifar, H., Hu, C., Taghavifar, L., Qin, Y., Na, J., & Wei, C. (2020). Optimal robust control of vehicle lateral stability using damped least-square backpropagation training of neural networks. Neurocomputing, 384, 256–267. https://doi.org/10.1016/j.neucom.2019.12.045
  • Valente, G., Formentini, A., Papini, L., Gerada, C., & Zanchetta, P. (2019). Performance improvement of bearingless multisector PMSM with optimal robust position control. IEEE Transactions on Power Electronics, 34(4), 3575–3585. https://doi.org/10.1109/TPEL.2018.2853038
  • Xia, P., Shi, H., Wen, H., Bu, Q., Hu, Y., & Yang, Y. (2020). Robust LMI-LQR control for dual-active-bridge DC–DC converters with high parameter uncertainties. IEEE Transactions on Transportation Electrification, 6(1), 131–145. https://doi.org/10.1109/TTE.6687316 doi: 10.1109/TTE.2020.2975313
  • Xiaojie, X. (2006). Non-fragile mixed LQR/H∞ control problem for linear systems with controller uncertainty. Chinese control conference, Harbin, China (pp. 579–583).
  • Xiaojie, X. (2008, July). Characterization of all static state feedback mixed LQR/H∞ controllers for linear continuous-time systems. Chinese control conference, Kunming, China (pp. 678–682).
  • Xiaojie, X. (2013). Structural constrained mixed LQR/H∞‌ controllers for continuous-time systems. Chinese control conference, Xi'an, China (pp. 2727–2732).
  • Xie, L., de Souza, C. E., & Fragoso, M. D. (1991). H∞ filtering for linear periodic systems with parameter uncertainty. System & Control Letters, 17(5), 343–350. https://doi.org/10.1016/0167-6911(91)90133-Y
  • Yang, X., Gao, H., & Shi, P. (2010). Robust orbital transfer for low earth orbit spacecraft with small-thrust. Journal of the Franklin Institute, 347(10), 1863–1887. https://doi.org/10.1016/j.jfranklin.2010.10.006
  • Yang, Y., Wu, M., & Chang, Y. (2010, July). Linear matrix inequalities based on linear quadratic regulator for the H2/Hinf control of the inverter split air conditioner temperature. International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA (pp. 1–8). Retrieved October 30, 2019, from https://pdfs.semanticscholar.org/84d5/e1258e201070d4b1b6420ec163fdbe4cba23.pdf
  • Yang, Y., Wu, M., & Chang, Y. (2014). Temperature control of the four-zone split inverter air conditioners using LMI expression based on LQR for mixed H2/H∞. Applied Energy, 113, 912–923. https://doi.org/10.1016/j.apenergy.2013.06.052
  • Zhang, H., & Wang, J. (2016). Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach. IEEE Transactions on Vehicular Technology, 65(1), 489–494. https://doi.org/10.1109/TVT.2015.2391184
  • Zhang, Q., Ye, S., Li, Y., & Wang, X. (2011). An enhanced LMI approach for mixed H2/H∞ flight tracking control. Chinese Journal of Aeronautics, 24(3), 324–328. https://doi.org/10.1016/S1000-9361(11)60038-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.