299
Views
3
CrossRef citations to date
0
Altmetric
Regular papers

Event-triggered H/L fault detection observer design for discrete-time Lipschitz nonlinear networked control systems in finite-frequency domain

, &
Pages 488-503 | Received 30 Apr 2021, Accepted 25 Jul 2021, Published online: 23 Aug 2021

References

  • Abedor, J., Nagpal, K., & Poolla, K. (1996). A linear matrix inequality approach to peak-to-peak gain minimization. International Journal of Robust and Nonlinear Control, 6(9–10), 899–927. https://doi.org/10.1002/(SICI)1099-1239(199611)6:9/10¡¿1.0.CO;2-9
  • Aouaouda, S., Chadli, M., Cocquempot, V., & Khadir, M. T. (2013). Multi-objective H_/H∞ fault detection observer design for takagi-sugeno fuzzy systems with unmeasurable premise variables: Descriptor approach. International Journal of Adaptive Control & Signal Processing, 27(12), 1031–1047. https://doi.org/10.1002/acs.v27.12
  • Apkarian, P., Gahinet, P., & Becker, G. (1995). Self-scheduled H∞ control of linear parameter-varying systems: A design example. Automatica, 31(9), 1251–1261. https://doi.org/10.1016/0005-1098(95)00038-X
  • Chen, Z., Han, L., & Hou, Y. (2020). Design of H_/H∞ fault detection observer for closed-loop nonlinear system with disturbance. Assembly Automation. https://doi.org/10.1108/AA-09-2019-0160
  • Chiang, L. H., Russell, E. L., & Braatz, R. D. (2001). Fault detection and diagnosis in industrial systems. Springer.
  • Chu, X., & Li, M. (2018). Event-triggered fault estimation and sliding mode fault-tolerant control for a class of nonlinear networked control systems. Journal of the Franklin Institute, 355(13), 5475–5502. https://doi.org/10.1016/j.jfranklin.2018.06.002
  • Chu, X., & Li, M. (2019). H∞ non-fragile observer-based dynamic event-triggered sliding mode control for nonlinear networked systems with sensor saturation and dead-zone input. ISA Transactions, 94(3), 93–107. https://doi.org/10.1016/j.isatra.2019.04.018.
  • Di, H., Duan, Z., & Hao, Y. (2017). An iterative approach to H_/H∞ fault detection observer design for discrete-time uncertain systems. Asian Journal of Control, 19(1), 188–201. https://doi.org/10.1002/asjc.v19.1.
  • Ding, S. (2008). Model-based fault diagnosis techniques: Design schemes, algorithms, and tools. Springer.
  • Dong, H., Wang, Z., Shen, B., & Ding, D. (2016). Variance-constrained H∞ control for a class of nonlinear stochastic discrete time-varying systems: The event-triggered design. Automatica, 72, 28–36. https://doi.org/10.1016/j.automatica.2016.05.012
  • Gahinet, P., & Apkarian, P. (1994). A linear matrix inequality approach to H∞ control. International Journal of Robust and Nonlinear Control, 4(4), 421–448. https://doi.org/10.1002/(ISSN)1099-1239
  • Golabi, A., Davoodi, M., Meskin, N., & Mohammadpour, J. (2018). Event-triggered fault detection for discrete-time LPV systems with application to a laboratory tank system. International Journal of Adaptive Control and Signal Processing, 32(11), 1591–1606. https://doi.org/10.1002/acs.v32.11
  • Gu, Y., & Yang, G. H. (2017, October 18). Event-triggered fault detection for discrete-time Lipschitz nonlinear networked systems in finite-frequency domain. Neurocomputing, 260, 245–256. https://doi.org/10.1016/j.neucom.2017.04.037
  • Guo, F., Ren, X., Li, Z., & Han, C. (2016). Fault detection for discrete-time Lipschitz nonlinear systems with signal-to-noise ratio constrained channels. Neurocomputing, 194, 317–325. https://doi.org/10.1016/j.neucom.2016.02.048
  • Han, W., Wang, Z., & Shen, Y. (2019a). H_/L∞ fault detection observer design for uncertain linear systems. International Journal of Systems Science, 50(1–4), 283–293. https://doi.org/10.1080/00207721.2018.1551974
  • Han, W., Wang, Z., & Shen, Y. (2019b). H_/L∞ fault detection observer for linear parameter-varying systems with parametric uncertainty. International Journal of Robust and Nonlinear Control, 29(10), 2912–2926. https://doi.org/10.1002/rnc.v29.10
  • Han, W., Wang, Z., Shen, Y., & Liu, Y. (2018). H_/L∞ fault detection for linear discrete-time descriptor systems. IET Control Theory and Applications, 12(15), 2156–2163. https://doi.org/10.1049/cth2.v12.15
  • Heemels, W. P. M. H., & Donkers, M. C. F. (2013). Model-based periodic event-triggered control for linear systems. Automatica, 49(3), 698–711. https://doi.org/10.1016/j.automatica.2012.11.025
  • Heemels, W. P. M. H., Teel, A. R., Wouw, N., & Nešić, D. (2010). Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance. IEEE Transactions on Automatic Control, 55(8), 1781–1796. https://doi.org/10.1109/TAC.2010.2042352
  • Hespanha, J. P., Naghshtabrizi, P., & Xu, Y. (2007). A survey of recent results in networked control systems. Proceedings of the IEEE, 95(1), 138–162. https://doi.org/10.1109/JPROC.2006.887288
  • Hu, J., Wang, Z., Alsaadi, F. E., & Hayat, T. (2017). Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities. Information Fusion, 38, 74–83. https://doi.org/10.1016/j.inffus.2017.03.003
  • Hu, S., & Zhu, Q. (2003). Stochastic optimal control and analysis of stability of networked control systems with long delay. Automatica, 39(11), 1877–1884. https://doi.org/10.1016/S0005-1098(03)00196-1
  • Hwang, I., Kim, S., Kim, Y., & Seah, C. E. (2010). A survey of fault detection, isolation, and reconfiguration methods. IEEE Transactions on Control Systems Technology, 18(3), 636–653. https://doi.org/10.1109/TCST.2009.2026285
  • Iwasaki, T., & Hara, S. (2005). Generalized KYP lemma: Unified frequency domain inequalities with design applications. IEEE Transactions on Automatic Control, 50(1), 41–59. https://doi.org/10.1109/TAC.2004.840475
  • Iwasaki, T., Hara, S., & Fradkov, A. L. (2005). Time domain interpretations of frequency domain inequalities on (semi)finite ranges. Systems & Control Letters, 54(7), 681–691. https://doi.org/10.1016/j.sysconle.2004.11.007
  • Li, H., Chen, Z., Wu, L., Lam, H. K., & Du, H. (2017). Event-triggered fault detection of nonlinear networked systems. IEEE Transactions on Cybernetics, 47(4), 1041–1052. https://doi.org/10.1109/TCYB.2016.2536750
  • Liu, L., & Wei, X. (2011). H−/H∞ fault detection observer for linear parameter varying systems. In Proceedings of SPIE the international society for optical engineering. Society of Photo-Optical Instrumentation Engineers-SPIE. https://doi.org/10.1117/12.913531.
  • Liu, Q. D., Long, Y., Ju, H. P., & Li, T. (2021). Neural network-based event-triggered fault detection for nonlinear Markov jump system with frequency specifications. Nonlinear Dynamics, 103(3), 1–17. https://doi.org/10.1007/s11071-021-06263-z
  • Luan, X., Shi, P., & Liu, F. (2011). Stabilization of networked control systems with random delays. IEEE Transactions on Industrial Electronics, 58(9), 4323–4330. https://doi.org/10.1109/TIE.2010.2102322
  • Peng, C., & Han, Q. L. (2013). A novel event-triggered transmission scheme and L2 control co-design for sampled-data control systems. IEEE Transactions on Automatic Control, 58(10), 2620–2626. https://doi.org/10.1109/TAC.2013.2256015
  • Tang, W., Wang, Z., & Shen, Y. (2018). Fault detection and isolation for discrete-time descriptor systems based on H_/L∞ observer and zonotopic residual evaluation. International Journal of Control, 93(8), 1867–1878. https://doi.org/10.1080/00207179.2018.1535716
  • Thomas, P. (2002). Fault detection and diagnosis in engineering systems: Janos J.Gertler; Marcel Dekker Inc., New York, 1998, ISBN 0-8247-9427-3. Control Engineering Practice, 10(9), 1037–1038. https://doi.org/10.1016/S0967-0661(02)00064-3
  • Wang, H., & Yang, G. H. (2008). A finite frequency domain approach to fault detection observer design for linear continuous-time systems. Asian Journal of Control, 10(5), 559–568. https://doi.org/10.1002/asjc.v10:5
  • Wang, X., Fei, Z., Wang, Z., & Yu, J. (2020). Zonotopic fault detection observer design for discrete-time systems with adaptively adjusted event-triggered mechanism. IET Control Theory & Applications, 14(1), 96–104. https://doi.org/10.1049/cth2.v14.1
  • Wang, Y., Chen, F., & Zhuang, G. (2020). Dynamic event-based reliable dissipative asynchronous control for stochastic markov jump systems with general conditional probabilities. Nonlinear Dynamics, 101(12), 465–485. https://doi.org/10.1007/s11071-020-05786-1
  • Wang, Y., Chen, F., Zhuang, G., & Song, G. (2020). Event-based asynchronous and resilient filtering for markov jump singularly perturbed systems against deception attacks. ISA Transactions, 112(10), 56–73. https://doi.org/10.1016/j.isatra.2020.11.029
  • Wang, Y., Zhuang, G., Chen, X., Wang, Z., & Chen, F. (2020). Dynamic event-based finite-time mixed H∞ and passive asynchronous filtering for T–S fuzzy singular markov jump systems with general transition rates. Nonlinear Analysis Hybrid Systems, 36(12). https://doi.org/10.1016/j.nahs.2020.100874
  • Wang, Z., Lim, C., Shi, P., & Shen, Y. (2017). H_/L∞ fault detection observer design for linear parameter-varying systems. IFAC-PapersOnLine, 50(1), 15271–15276. https://doi.org/10.1016/j.ifacol.2017.08.2409. 20th IFAC world congress.
  • Yao, L., Cocquempot, V., & Hong, W. (2015). Fault diagnosis and fault tolerant control scheme for a class of nonlinear singular systems. IET Control Theory and Applications, 9(6), 843–851. https://doi.org/10.1049/cth2.v9.6
  • Zemouche, A., & Boutayeb, M. (2013). On LMI conditions to design observers for Lipschitz nonlinear systems – ScienceDirect. Automatica, 49(2), 585–591. https://doi.org/10.1016/j.automatica.2012.11.029
  • Zhang, K., Jiang, B., & Shi, P. (2009). Fast fault estimation and accommodation for dynamical systems. LET Control Theory & Applications, 3(2), 189–199. https://doi.org/10.1049/iet-cta:20070283
  • Zhang, L., Lam, H. K., Sun, Y., & Liang, H. (2020). Fault detection for fuzzy semi-Markov jump systems based on interval type-2 fuzzy approach. IEEE Transactions on Fuzzy Systems, 28(10), 2375–2388. https://doi.org/10.1109/TFUZZ.91
  • Zhang, X. M., & Q. L. Han (2015). Event-based H∞ filtering for sampled-data systems. Automatica, 51(C), 55–69. https://doi.org/10.1016/j.automatica.2014.10.092.
  • Zhang, Y., Wang, Z., Ma, L., & Alsaadi, F. E. (2019). Annulus-event-based fault detection, isolation and estimation for multirate time-varying systems: Applications to a three-tank system. Journal of Process Control, 75(12), 48–58. https://doi.org/10.1016/j.jprocont.2018.12.005.
  • Zhou, L., Pan, R., Xiao, X., & Sun, T. (2016). Event-triggered H∞ filtering for discrete-time systems over unreliable networks with package dropouts. Neurocomputing, 218(C), 346–353. https://doi.org/10.1016/j.neucom.2016.08.086.
  • Zhou, M., Rodrigues, M., Wang, Z., & Theilliol, D. (2017). H_/L∞ fault detection observer for discrete-time Takagi-Sugeno fuzzy systems. In IEEE conference on decision & control. IEEE. https://doi.org/10.1109/CDC.2017.8264420
  • Zhou, M., Wang, Z., Shen, Y., & Shen, M. (2017). H_/H∞ fault detection observer design in finite-frequency domain for Lipschitz non-linear systems. IET Control Theory & Applications, 11(14), 2361–2369. https://doi.org/10.1049/cth2.v11.14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.