432
Views
39
CrossRef citations to date
0
Altmetric
Articles

L2-L state estimation for continuous stochastic delayed neural networks via memory event-triggering strategy

, ORCID Icon, &
Pages 2742-2757 | Received 08 Nov 2021, Accepted 26 Feb 2022, Published online: 06 Apr 2022

References

  • Arunkumar, A., Sakthivel, R., Mathiyalagan, K., & Anthoni, S. M. (2013). State estimation for switched discrete-time stochastic BAM neural networks with time varying delay. Nonlinear Dynamics, 73(3), 1565–1585. https://doi.org/10.1007/s11071-013-0886-8
  • Attia, Z. I., Gilad, L., & Friedman, P. A. (2021). Deep neural networks learn by using human-selected electrocardiogram features and novel features. European Heart Journal -- Digital Health, 2(3), 446–455. https://doi.org/10.1093/ehjdh/ztab060
  • Bittibssi, T. M., Genedy, M. A., Maged, S. A., & Zekry, A. A. (2021). sEMG pattern recognition based on recurrent neural network. Biomedical Signal Processing and Control, 70, 103048. https://doi.org/10.1016/j.bspc.2021.103048
  • Chen, Y., Fu, Z., Liu, Y., & Alsaadi, F. E. (2017). Further results on passivity analysis of delayed neural networks with leakage delay. Neurocomputing, 224(4), 135–141. https://doi.org/10.1016/j.neucom.2016.10.045
  • Chen, Y., Wang, Z., Liu, Y., & Alsaadi, F. E. (2018). Stochastic stability for distributed delay neural networks via augmented Lyapunov–Krasovskii functionals. Applied Mathematics and Computation, 338(4), 869–881. https://doi.org/10.1016/j.amc.2018.05.059
  • Chen, Y., & Zheng, W. (2013). Stability analysis of time-delay neural networks subject to stochastic perturbations. IEEE Transactions on Cybernetics, 43(6), 2122–2134. https://doi.org/10.1109/TCYB.2013.2240451
  • Ding, D., Han, Q.-L., Wang, Z., & Ge, X. (2019). A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Transactions on Industrial Informatics, 15(5), 2483–2499. https://doi.org/10.1109/TII.9424
  • Ding, D., Wang, Z., & Han, Q.-L. (2020). A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks. IEEE Transactions on Automatic Control, 65(4), 1792–1799. https://doi.org/10.1109/TAC.9
  • Ding, D., Wang, Z., Han, Q.-L., & Wei, G. (2018). Security control for discrete-time stochastic nonlinear systems subject to deception attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(5), 779–789. https://doi.org/10.1109/TSMC.2016.2616544
  • Ge, X., Han, Q.-L., & Wang, Z. (2019a). A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Transactions on Cybernetics, 49(1), 171–183. https://doi.org/10.1109/TCYB.2017.2769722
  • Ge, X., Han, Q.-L., & Wang, Z. (2019b). A threshold-parameter-dependent approach to designing distributed event-triggered H∞ consensus filters over sensor networks. IEEE Transactions on Cybernetics, 49(4), 1148–1159. https://doi.org/10.1109/TCYB.6221036
  • Hu, J., Wang, Z., Alsaadi, F. E., & Hayat, T. (2017). Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities. Information Fusion, 38(3), 774–783. https://doi.org/10.1016/j.inffus.2017.03.003
  • Hu, J., Wang, Z., & Gao, H. (2018). Joint state and fault estimation for time-varying nonlinear systems with randomly occurring faults and sensor saturations. Automatica, 97(7), 150–160. https://doi.org/10.1016/j.automatica.2018.07.027
  • Hu, J., Wang, Z., Liu, G.-P., Jia, C., & Williams, J. (2020). Event-triggered recursive state estimation for dynamical networks under randomly switching topologies and multiple missing measurements. Automatica, 115(7), 108908. https://doi.org/10.1016/j.automatica.2020.108908
  • Hu, J., Wang, Z., Liu, S., & Gao, H. (2016). A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements. Automatica, 64(5439), 155–162. https://doi.org/10.1016/j.automatica.2015.11.008
  • Huang, H., Feng, G., & Cao, J. (2008). Robust state estimation for uncertain neural networks with time-varying delay. IEEE Transactions on Neural Networks, 19(8), 1329–1339. https://doi.org/10.1109/TNN.2008.2000206
  • Li, Q., Shen, B., Wang, Z., & Alsaadi, F. E. (2018). Event-triggered H∞ state estimation for state-saturated complex networks subject to quantisation effects and distributed delays. Journal of the Franklin Institute, 355(5), 2874–2891. https://doi.org/10.1016/j.jfranklin.2018.01.020
  • Li, Q., Shen, B., Wang, Z., Huang, T., & Luo, J. (2019). Synchronization control for a class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach. IEEE Transactions on Cybernetics, 49(5), 1979–1986. https://doi.org/10.1109/TCYB.6221036
  • Li, Q., Shen, B., Wang, Z., & Sheng, W. (2020). Recursive distributed filtering over sensor networks on Gilbert-Elliott channels: A dynamic event-triggered approach. Automatica, 113(4), 108681. https://doi.org/10.1016/j.automatica.2019.108681
  • Liang, J., Wang, Z., & Liu, X. (2009). State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: The discrete-time case. IEEE Transactions on Neural Networks, 20(5), 781–793. https://doi.org/10.1109/TNN.2009.2013240
  • Liu, H., Wang, Z., Fei, W., & Li, J. (2020). H∞ and l2−l∞ state estimation for delayed memristive neural networks on finite horizon: The round-robin protocol. Neural Networks, 132(21), 121–130. https://doi.org/10.1016/j.neunet.2020.08.006
  • Liu, H., Wang, Z., Shen, B., & Liu, X. (2017). Event-triggered H∞ state estimation for delayed stochastic memristive neural networks with missing measurements: The discrete time case. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3726–3737. https://doi.org/10.1109/TNNLS.2017.2728639
  • Liu, S., Wei, G., Song, Y., & Ding, D. (2017). Set-membership state estimation subject to uniform quantization effects and communication constraints. Journal of the Franklin Institute, 354(15), 7012–7027. https://doi.org/10.1016/j.jfranklin.2017.08.012
  • Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234(4), 11–26. https://doi.org/10.1016/j.neucom.2016.12.038
  • Liu, Y., Shen, B., & Shu, H. (2020). Finite-time resilient H∞ state estimation for discrete-time delayed neural networks under dynamic event-triggered mechanism. Neural Networks, 121(2), 356–365. https://doi.org/10.1016/j.neunet.2019.09.006
  • Liu, Y., Wang, Z., & Liu, X. (2008). State estimation for discrete-time markovian jumping neural networks with mixed mode-dependent delays. Physics Letters A, 372(48), 7147–7155. https://doi.org/10.1016/j.physleta.2008.10.045
  • Ma, L., Wang, Z., Han, Q.-L., & Liu, Y. (2017). Consensus control of stochastic multi-agent systems: A survey. Science China Information Sciences, 60, 120201. https://doi.org/10.1007/s11432-017-9169-4
  • Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1(1), 4–27. https://doi.org/10.1109/72.80202
  • Saravanakumar, R., Mukaidani, H., & Muthukumar, P. (2020). Extended dissipative state estimation of delayed stochastic neural networks. Neurocomputing, 406(2), 244–252. https://doi.org/10.1016/j.neucom.2020.03.106
  • Shen, B., Wang, Z., & Qiao, H. (2017). Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements. IEEE Transactions on Neural Networks and Learning Systems, 28(5), 1152–1163. https://doi.org/10.1109/TNNLS.2016.2516030
  • Shen, B., Wang, Z., Wang, D., & Li, Q. (2020). State-saturated recursive filter design for stochastic time-varying nonlinear complex networks under deception attacks. IEEE Transactions on Neural Networks and Learning Systems, 31(10), 3788–3800. https://doi.org/10.1109/TNNLS.5962385
  • Shen, B., Wang, Z., Wang, D., Luo, J., Pu, H., & Peng, Y. (2019). Finite-horizon filtering for a class of nonlinear time-delayed systems with an energy harvesting sensor. Automatica, 100(9), 144–152. https://doi.org/10.1016/j.automatica.2018.11.010
  • Shen, Y., Zhou, G., & Ahn, C. K. (2021). Memory-Event-Triggered H∞ filtering of unmanned surface vehicles with communication delays. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(7), 2463–2467. https://doi.org/10.1109/TCSII.2021.3050760
  • Suo, J., Li, N., & Li, Q. (2012). Event-triggered H∞ state estimation for discrete-time delayed switched stochastic neural networks with persistent dwell-time switching regularities and sensor saturations. Neurocomputing, 455(3), 297–307. https://doi.org/10.1016/j.neucom.2021.01.131
  • Tian, E., Wang, K., Zhao, X., Shen, S., & Liu, J. (2019). An improved memory-event-triggered control for networked control systems. Journal of the Franklin Institute, 356(13), 7210–7223. https://doi.org/10.1016/j.jfranklin.2019.06.041
  • Tian, E., Wang, Z., Zou, L., & Yue, D. (2019a). Chance-constrained H∞ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case. Automatica, 107(3), 296–305. https://doi.org/10.1016/j.automatica.2019.05.039
  • Tian, E., Wang, Z., Zou, L., & Yue, D. (2019b). Probabilistic-constrained filtering for a class of nonlinear systems with improved static event-triggered communication. International Journal of Robust and Nonlinear Control, 29(5), 1484–1498. https://doi.org/10.1002/rnc.v29.5
  • Wang, H., Dong, R., Xue, A., & Peng, Y. (2019). Event-triggered L2−L∞ state estimation for discrete-time neural networks with sensor saturations and data quantization. Journal of the Franklin Institute, 356(17), 10216–10240. https://doi.org/10.1016/j.jfranklin.2018.01.038
  • Wang, J., Zhang, X.-M., Lin, Y., Ge, X., & Han, Q.-L. (2018). Event-triggered dissipative control for networked stochastic systems under non-uniform sampling. Information Sciences, 447(10), 216–228. https://doi.org/10.1016/j.ins.2018.03.003
  • Wang, K., Tian, E., Shen, S., Wei, L., & Zhang, J. (2019). Input–output finite-time stability for networked control systems with memory event-triggered scheme. Journal of the Franklin Institute, 356(15), 8507–8520. https://doi.org/10.1016/j.jfranklin.2019.08.020
  • Wang, M., Wang, Z., Chen, Y., & Sheng, W. (2020). Event-based adaptive neural tracking control for discrete-time stochastic nonlinear systems: A triggering threshold compensation strategy. IEEE Transactions on Neural Networks and Learning Systems, 31(6), 1968–1981. https://doi.org/10.1109/TNNLS.5962385
  • Wang, M., Wang, Z., Dong, H., & Han, Q.-L. (2021). A novel framework for backstepping-based control of discrete-time strict-feedback nonlinear systems with multiplicative noises. IEEE Transactions on Automatic Control, 66(4), 1484–1496. https://doi.org/10.1109/TAC.2020.2995576
  • Yuan, Y., Yuan, H., Wang, Z., Guo, L., & Yang, H. (2017). Optimal control for networked control systems with disturbances: A delta operator approach. IET Control Theory and Applications, 11(9), 1325–1332. https://doi.org/10.1049/cth2.v11.9
  • Zeng, N., Li, H., Wang, Z., Liu, W., Liu, S., Alsaadi, F. E., & Liu, X. (2021). Deep-reinforcement-learning-based images segmentation for quantitative analysis of gold immunochromatographic strip. Neurocomputing, 425(6), 173–180. https://doi.org/10.1016/j.neucom.2020.04.001
  • Zhang, X.-M., & Han, Q.-L. (2017). State estimation for static neural networks with time-varying delays based on an improved reciprocally convex inequality. IEEE Transactions on Neural Networks and Learning Systems, 29(4), 1376–1381. https://doi.org/10.1109/TNNLS.2017.2661862
  • Zhang, X.-M., Han, Q.-L., & Ge, X. (2019). An overview of neuronal state estimation of neural networks with time-varying delays. Information Sciences, 478(1), 83–99. https://doi.org/10.1016/j.ins.2018.11.001
  • Zhang, X.-M., Han, Q.-L., Seuret, A., Gouaisbaut, F., & He, Y. (2019). Overview of recent advances in stability of linear systems with time-varying delays. IET Control Theory and Applications, 13(1), 1–16. https://doi.org/10.1049/cth2.v13.1
  • Zhang, X.-M., Han, Q.-L., Wang, Z., & Zhang, B.-L. (2017). Neuronal state estimation for neural networks with two additive time-varying delay components. IEEE Transactions on Cybernetics, 47(10), 3184–3194. https://doi.org/10.1109/TCYB.2017.2690676
  • Zhao, Z., Wang, Z., Zou, L., & Guo, G. (2018). Finite-time state estimation for delayed neural networks with redundant delayed channels. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1), 441–451. https://doi.org/10.1109/TSMC.2018.2874508
  • Zou, L., Wang, Z., Gao, H., & Liu, X. (2015). Event-triggered state estimation for complex networks with mixed time delays via sampled data information: The continuous-time case. IEEE Transactions on Cybernetics, 45(12), 2804–2815. https://doi.org/10.1109/TCYB.2014.2386781
  • Zou, L., Wang, Z., Gao, H., & Liu, X. (2017). State estimation for discrete-time dynamical networks with time-varying delays and stochastic disturbances under the Round-Robin protocol. IEEE Transactions on Neural Networks and Learning Systems, 28(5), 1139–1151. https://doi.org/10.1109/TNNLS.5962385
  • Zou, L., Wang, Z., Han, Q.-L., & Zhou, D. H. (2021). Moving horizon estimation of networked nonlinear systems with random access protocol. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(5), 2937–2948. https://doi.org/10.1109/TSMC.2019.2918002
  • Zou, L., Wang, Z., Hu, J., & Zhou, D. H. (2020). Moving horizon estimation with unknown inputs under dynamic quantization effects. IEEE Transactions on Automatic Control, 65(12), 5368–5375. https://doi.org/10.1109/TAC.9
  • Zou, L., Wang, Z., & Zhou, D. H. (2020). Moving horizon estimation with non-uniform sampling under component-based dynamic event-triggered transmission. Automatica, 120(3), 109154. https://doi.org/10.1016/j.automatica.2020.109154

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.