1,610
Views
58
CrossRef citations to date
0
Altmetric
Articles

A survey on fault-tolerant consensus control of multi-agent systems: trends, methodologies and prospects

, ORCID Icon, , &
Pages 2800-2813 | Received 31 Jan 2022, Accepted 17 Mar 2022, Published online: 06 Apr 2022

References

  • Azizi, S. M., & Khorasani, K. (2012). A hierarchical architecture for cooperative actuator fault estimation and accommodation of formation flying satellites in deep space. IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1428–1450. https://doi.org/10.1109/TAES.2012.6178071
  • Cao, L., Li, H., Dong, G., & Lu, R. (2019). Event-triggered control for multiagent systems with sensor faults and input saturation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(6), 3855–3866. https://doi.org/10.1109/TSMC.2019.2938216
  • Cárdenas, A. A., Amin, S., & Sastry, S. (2008). Research challenges for the security of control systems. In Proceedings of the 3rd Conference on Hot Topics in Security (pp. 1–6). USENIX Association.
  • Cavalcante, R. C., Bittencourt, I. I., da Silva, A. P., Silva, M., Costa, E., & Santos, R. (2012). A survey of security in multi-agent systems. Expert Systems with Applications, 39(5), 4835–4846. https://doi.org/10.1016/j.eswa.2011.09.130
  • Chen, C., Lewis, F. L., Xie, S., Modares, H., Liu, Z., Zuo, S., & Davoudi, A. (2019). Resilient adaptive and H∞ controls of multi-agent systems under sensor and actuator faults. Automatica, 102(6), 19–26. https://doi.org/10.1016/j.automatica.2018.12.024
  • Chen, C., Xie, K., Lewis, F. L., Xie, S., & Davoudi, A. (2018). Fully distributed resilience for adaptive exponential synchronization of heterogeneous multiagent systems against actuator faults. IEEE Transactions on Automatic Control, 64(8), 3347–3354. https://doi.org/10.1109/TAC.9
  • Chen, S., Ho, D. W., Li, L., & Liu, M. (2014). Fault-tolerant consensus of multi-agent system with distributed adaptive protocol. IEEE Transactions on Cybernetics, 45(10), 2142–2155. https://doi.org/10.1109/TCYB.2014.2366204
  • Chen, Y., Lu, J., Yu, X., & Hill, D. J. (2013). Multi-agent systems with dynamical topologies: Consensus and applications. IEEE Circuits and Systems Magazine, 13(3), 21–34. https://doi.org/10.1109/MCAS.2013.2271443
  • Cheng, Z., Yue, D., Hu, S., Ge, H., & Chen, L. (2020). Distributed event-triggered consensus of multi-agent systems under periodic DoS jamming attacks. Neurocomputing, 400(4), 458–466. https://doi.org/10.1016/j.neucom.2019.03.089
  • Cucker, F., & Smale, S. (2007). Emergent behavior in flocks. IEEE Transactions on Automatic Control, 52(5), 852–862. https://doi.org/10.1109/TAC.2007.895842
  • Cui, Y., Liu, Y., Zhang, W., & Alsaadi, F. E. (2021). Sampled-based consensus for nonlinear multiagent systems with deception attacks: The decoupled method. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1), 561–573. https://doi.org/10.1109/TSMC.6221021
  • Deng, C., & Che, W. (2019). Fault-tolerant fuzzy formation control for a class of nonlinear multiagent systems under directed and switching topology. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(9), 5456–5465. https://doi.org/10.1109/TSMC.2019.2954870
  • Dibaji, S. M., & Ishii, H. (2015). Consensus of second-order multi-agent systems in the presence of locally bounded faults. Systems & Control Letters, 79(12), 23–29. https://doi.org/10.1016/j.sysconle.2015.02.005
  • Dibaji, S. M., & Ishii, H. (2017). Resilient consensus of second-order agent networks: Asynchronous update rules with delays. Automatica, 81, 123–132. https://doi.org/10.1016/j.automatica.2017.03.008
  • Ding, D., Han, Q. L., Wang, Z., & Ge, X. (2019). A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Transactions on Industrial Informatics, 15(5), 2483–2499. https://doi.org/10.1109/TII.9424
  • Ding, D., Wang, Z., & Han, Q. L. (2019). A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks. IEEE Transactions on Automatic Control, 65(4), 1792–1799. https://doi.org/10.1109/TAC.9
  • Ding, D., Wang, Z., Han, Q. L., & Wei, G. (2016). Security control for discrete-time stochastic nonlinear systems subject to deception attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(5), 779–789. https://doi.org/10.1109/TSMC.2016.2616544
  • Ding, D., Wang, Z., Ho, D. W. C., & Wei, G. (2017). Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks. IEEE Transactions on Cybernetics, 47(8), 1936–1947. https://doi.org/10.1109/TCYB.2016.2582802
  • Ding, L., Han, Q. L., Ge, X., & Zhang, X. M. (2017). An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Transactions on Cybernetics, 48(4), 1110–1123. https://doi.org/10.1109/TCYB.2017.2771560
  • Dong, X., Yu, B., Shi, Z., & Zhong, Y. (2015). Time-varying formation control for unmanned aerial vehicles: Theories and applications. IEEE Transactions on Control Systems Technology, 23(1), 340–348. https://doi.org/10.1109/TCST.2014.2314460
  • Dzung, D., Naedele, M., Von Hoff, T. P., & Crevatin, M. (2005). Security for industrial communication systems. Proceedings of the IEEE, 93(6), 1152–1177. https://doi.org/10.1109/JPROC.2005.849714
  • Fang, W., Zamani, M., & Chen, Z. (2021). Secure and privacy preserving consensus for second-order systems based on Paillier encryption. Systems & Control Letters, 148(2021), Article 104869. https://doi.org/10.1016/j.sysconle.2020.104869
  • Feng, S., & Ishii, H. (2022). Dynamic quantized consensus of general linear multi-agent systems under Denial-of-Service attacks. IEEE Transactions on Control of Network Systems. Early access. https://doi.org/10.1109/TCNS.2022.3140684
  • Feng, Z., & Hu, G. (2014). Distributed tracking control for multi-agent systems under two types of attacks. IFAC Proceedings Volumes, 47(3), 5790–5795. https://doi.org/10.3182/20140824-6-ZA-1003.01511
  • Feng, Z., & Hu, G. (2017). Distributed secure average consensus for linear multi-agent systems under DoS attacks. In 2017 American Control Conference (ACC) (pp. 2261–2266). Institute of Electrical and Electronics Engineers Inc.
  • Feng, Z., & Hu, G. (2019a). Connectivity-preserving flocking for networked Lagrange systems with time-varying actuator faults. Automatica, 109(2), Article 108509. https://doi.org/10.1016/j.automatica.2019.108509
  • Feng, Z., & Hu, G. (2019b). Secure cooperative event-triggered control of linear multiagent systems under DoS attacks. IEEE Transactions on Control Systems Technology, 28(3), 741–752. https://doi.org/10.1109/TCST.87
  • Feng, Z., Hu, G., & Wen, G. (2016). Distributed consensus tracking for multi-agent systems under two types of attacks. International Journal of Robust and Nonlinear Control, 26(5), 896–918. https://doi.org/10.1002/rnc.3342
  • Feng, Z., Wen, G., & Hu, G. (2016). Distributed secure coordinated control for multiagent systems under strategic attacks. IEEE Transactions on Cybernetics, 47(5), 1273–1284. https://doi.org/10.1109/TCYB.2016.2544062
  • Franzè, G., Tedesco, F., & Famularo, D. (2020). Resilience against replay attacks: A distributed model predictive control scheme for networked multi-Agent systems. IEEE/CAA Journal of Automatica Sinica, 8(3), 628–640. https://doi.org/10.1109/JAS.6570654
  • Gao, C., Wang, Z., He, X., & Dong, H. (2021a). Encryption-decryption-based consensus control for multi-agent systems: Handling actuator faults. Automatica, 134(8), Article 109908. https://doi.org/10.1016/j.automatica.2021.109908
  • Gao, C., Wang, Z., He, X., & Dong, H. (2021b). Fault-tolerant consensus control for multi-agent systems: An encryption-decryption scheme. IEEE Transactions on Automatic Control. Early access. https://doi.org/10.1109/TAC.2021.3079407
  • Gao, C., Wang, Z., He, X., & Yue, D. (2021). Sampled-data-based fault-tolerant consensus control for multi-agent systems: A data privacy preserving scheme. Automatica, 133(6), Article 109847. https://doi.org/10.1016/j.automatica.2021.109847
  • Gao, M., Yang, S., & Sheng, L. (2019). Distributed fault estimation for time-varying multi-agent systems with sensor faults and partially decoupled disturbances. IEEE Access, 7, 147905–147913. https://doi.org/10.1109/Access.6287639
  • Gao, Z. (2015). Fault estimation and fault-tolerant control for discrete-time dynamic systems. IEEE Transactions on Industrial Electronics, 62(6), 3874–3884. https://doi.org/10.1109/TIE.2015.2392720
  • Ge, X., Han, Q. L., & Wang, Z. (2017). A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Transactions on Cybernetics, 49(1), 171–183. https://doi.org/10.1109/TCYB.2017.2769722
  • Ge, X., Han, Q. L., & Wang, Z. (2018). A threshold-parameter-dependent approach to designing distributed event-triggered H∞ consensus filters over sensor networks. IEEE Transactions on Cybernetics, 49(4), 1148–1159. https://doi.org/10.1109/TCYB.6221036
  • Han, J., Liu, X., Gao, X., & Wei, X. (2019). Intermediate observer-based robust distributed fault estimation for nonlinear multiagent systems with directed graphs. IEEE Transactions on Industrial Informatics, 16(12), 7426–7436. https://doi.org/10.1109/TII.9424
  • He, L., Bai, P., Liang, X., Zhang, J., & Wang, W. (2018). Feedback formation control of UAV swarm with multiple implicit leaders. Aerospace Science and Technology, 72, 327–334. https://doi.org/10.1016/j.ast.2017.11.020
  • He, L., Cai, L., Cheng, P., Pan, J., & Shi, L. (2019). Consensus-based data-privacy preserving data aggregation. IEEE Transactions on Automatic Control, 64(12), 5222–5229. https://doi.org/10.1109/TAC.9
  • He, Y., & Mu, X. (2019). Cucker-Smale flocking subject to random failure on general digraphs. Automatica, 106(1), 54–60. https://doi.org/10.1016/j.automatica.2019.04.031
  • Hu, J., Wang, Z., Alsaadi, F. E., & Hayat, T. (2017). Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities. Information Fusion, 38(3), 74–83. https://doi.org/10.1016/j.inffus.2017.03.003
  • Hu, J., Wang, Z., & Gao, H. (2018). Joint state and fault estimation for time-varying nonlinear systems with randomly occurring faults and sensor saturations. Automatica, 97(7), 150–160. https://doi.org/10.1016/j.automatica.2018.07.027
  • Hu, J., Wang, Z., & Liu, G. P. (2021). Delay compensation-based state estimation for time-varying complex networks with incomplete observations and dynamical bias. IEEE Transactions on Cybernetics. Early access. https://doi.org/10.1109/TCYB.2020.3043283 .
  • Hu, J., Wang, Z., Liu, G. P., Jia, C., & Williams, J. (2020). Event-triggered recursive state estimation for dynamical networks under randomly switching topologies and multiple missing measurements. Automatica, 115(7), Article 108908. https://doi.org/10.1016/j.automatica.2020.108908
  • Hu, J., Zhang, P., Kao, Y., Liu, H., & Chen, D. (2019). Sliding mode control for Markovian jump repeated scalar nonlinear systems with packet dropouts: The uncertain occurrence probabilities case. Applied Mathematics and Computation, 362(4), Article 124574. https://doi.org/10.1016/j.amc.2019.124574
  • Hua, C., Li, Z., Li, K., Chen, S., & Sun, J. (2020). Distributedcontrol for uncertain nonlinear multiagent systems subject to hybrid faults. International Journal of Control, Automation and Systems, 18(10), 2589–2598. https://doi.org/10.1007/s12555-019-0363-3
  • Huang, X., & Dong, J. (2020). Reliable leader-to-follower formation control of multiagent systems under communication quantization and attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(1), 89–99. https://doi.org/10.1109/TSMC.6221021
  • Jadhav, S., Datar, A., & Werner, H. (2018). Distributed approach to dynamic quantization for multi-agent systems. In 2018 Annual American Control Conference (ACC) (pp. 2473–2478). Institute of Electrical and Electronics Engineers Inc.
  • Ji, H., He, X., Shang, J., & Zhou, D. (2017). Incipient fault detection with smoothing techniques in statistical process monitoring. Control Engineering Practice, 62(2), 11–21. https://doi.org/10.1016/j.conengprac.2017.03.001
  • Jia, Q., Han, Z., Tang, W. K., & Zhou, J. (2020). Consensus in multi-agent system under aperiodic denial-of-service attacks. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1–5). Institute of Electrical and Electronics Engineers Inc.
  • Jung, Y., Kim, M., Masoumzadeh, A., & Joshi, J. B. (2012). A survey of security issue in multi-agent systems. Artificial Intelligence Review, 37(3), 239–260. https://doi.org/10.1007/s10462-011-9228-8
  • Khalili, M., Zhang, X., Cao, Y., Polycarpou, M. M., & Parisini, T. (2017). Distributed adaptive fault-tolerant control of a class of high-order nonlinear uncertain multi-agent systems. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 6352–6357). Institute of Electrical and Electronics Engineers Inc.
  • Khalili, M., Zhang, X., Cao, Y., Polycarpou, M. M., & Parisini, T. (2018). Distributed adaptive fault-tolerant leader-following formation control of nonlinear uncertain second-order multi-agent systems. International Journal of Robust and Nonlinear Control, 28(15), 4287–4308. https://doi.org/10.1002/rnc.4232
  • Khalili, M., Zhang, X., Polycarpou, M. M., Parisini, T., & Cao, Y. (2018). Distributed adaptive fault-tolerant control of uncertain multi-agent systems. Automatica, 87(8), 142–151. https://doi.org/10.1016/j.automatica.2017.09.002
  • Khazraei, A., Kebriaei, H., & Salmasi, F. R. (2017). Replay attack detection in a multi agent system using stability analysis and loss effective watermarking. In 2017 American Control Conference (ACC) (pp. 4778–4783). Institute of Electrical and Electronics Engineers.
  • LeBlanc, H. J., Zhang, H., Koutsoukos, X., & Sundaram, S. (2013). Resilient asymptotic consensus in robust networks. IEEE Journal on Selected Areas in Communications, 31(4), 766–781. https://doi.org/10.1109/JSAC.2013.130413
  • Li, H., Wu, Y., & Chen, M. (2020). Adaptive fault-tolerant tracking control for discrete-time multiagent systems via reinforcement learning algorithm. IEEE Transactions on Cybernetics, 51(3), 1163–1174. https://doi.org/10.1109/TCYB.6221036
  • Li, J., Fang, F., Liu, Y., & Chen, Y. (2021). Sampled-data-based consensus of distributed multi-agent systems under DoS attacks. In 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS) (pp. 647–652). Institute of Electrical and Electronics Engineers Inc.
  • Li, Q., Shen, B., Wang, Z., Huang, T., & Luo, J. (2018). Synchronization control for a class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach. IEEE Transactions on Cybernetics, 49(5), 1979–1986. https://doi.org/10.1109/TCYB.6221036
  • Li, Q., Shen, B., Wang, Z., & Sheng, W. (2020). Recursive distributed filtering over sensor networks on Gilbert-Elliott channels: A dynamic event-triggered approach. Automatica, 113(4), Article 108681. https://doi.org/10.1016/j.automatica.2019.108681
  • Li, S., Batra, R., Brown, D., Chang, H. D., Ranganathan, N., Hoberman, C., Rus, D., & Lipson, H. (2019). Particle robotics based on statistical mechanics of loosely coupled components. Nature, 567(7748), 361–365. https://doi.org/10.1038/s41586-019-1022-9
  • Li, X.-M., Xiao, W., Zhou, Q., & Li, H. (2019). Secure consensus control for time-varying multi-agent systems with mixed types attacks. In 2019 6th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS) (pp. 132–137). Institute of Electrical and Electronics Engineers Inc.
  • Li, Z., Hua, C., & Li, K. (2019). Distributed fault-tolerant consensus control for uncertain nonlinear multi-agent systems. In 2019 3rd International Symposium on Autonomous Systems (ISAS) (pp. 478–483). Institute of Electrical and Electronics Engineers Inc.
  • Liang, J., Lam, J., & Wang, Z. (2009). State estimation for Markov-type genetic regulatory networks with delays and uncertain mode transition rates. Physics Letters A, 373(47), 4328–4337. https://doi.org/10.1016/j.physleta.2009.09.055
  • Lin, Z., Wang, L., Chen, Z., Fu, M., & Han, Z. (2016). Necessary and sufficient graphical conditions for affine formation control. IEEE Transactions on Automatic Control, 61(10), 2877–2891. https://doi.org/10.1109/TAC.2015.2504265
  • Lin, Z., Wang, L., Han, Z., & Fu, M. (2014). Distributed formation control of multi-agent systems using complex Laplacian. IEEE Transactions on Automatic Control, 59(7), 1765–1777. https://doi.org/10.1109/TAC.2014.2309031
  • Liu, H., Ma, L., Wang, Z., Liu, Y., & Alsaadi, F. E. (2020). An overview of stability analysis and state estimation for memristive neural networks. Neurocomputing, 391(1), 1–12. https://doi.org/10.1016/j.neucom.2020.01.066
  • Liu, H., & Wang, Z. (2021). Sampled-data-based consensus of multi-agent systems under asynchronous denial-of-service attacks. Nonlinear Analysis: Hybrid Systems, 39(8). https://doi.org/10.1016/j.nahs.2020.100969
  • Liu, Q., Ren, X., & Mo, Y. (2017). Secure and privacy preserving average consensus. In Proceedings of the 11th Asian Control Conference (ASCC) (pp. 274–279). Institute of Electrical and Electronics Engineers Inc.
  • Ma, H., & Yang, G. (2015). Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections. IEEE Transactions on Automatic Control, 61(11), 3240–3255. https://doi.org/10.1109/TAC.2015.2507864
  • Ma, L., Wang, Z., Han, Q. L., & Liu, Y. (2017). Consensus control of stochastic multi-agent systems: A survey. Science China Information Sciences, 60(12), 1–15. https://doi.org/10.1007/s11432-017-9169-4
  • Ma, L., Wang, Z., Liu, Y., & Alsaadi, F. E. (2019). Distributed filtering for nonlinear time-delay systems over sensor networks subject to multiplicative link noises and switching topology. International Journal of Robust and Nonlinear Control, 29(10), 2941–2959. https://doi.org/10.1002/rnc.v29.10
  • Ma, L., Wang, Z., & Yuan, Y. (2016). Consensus control for nonlinear multi-agent systems subject to deception attacks. In 2016 22nd International Conference on Automation and Computing (ICAC) (pp. 21–26). Institute of Electrical and Electronics Engineers Inc.
  • Mo, Y., Kim, T. H. J., Brancik, K., Dickinson, D., Lee, H., Perrig, A., & Sinopoli, B. (2011). Cyber-physical security of a smart grid infrastructure. Proceedings of the IEEE, 100(1), 195–209. https://doi.org/10.1109/JPROC.2011.2161428
  • Nozari, E., Tallapragada, P., & Cortés, J. (2017). Differentially private average consensus: Obstructions, trade-offs, and optimal algorithm design. Automatica, 81(2017), 221–231. https://doi.org/10.1016/j.automatica.2017.03.016
  • Olfati-Saber, R., & Murray, R. M. (2003). Consensus protocols for networks of dynamic agents. In Proceedings of the 2003 American Control Conference (Vol. 2, pp. 951–956). https://doi.org/10.1109/ACC.2003.1239709
  • Olfati-Saber, R., & R. M. Murray (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533. https://doi.org/10.1109/TAC.2004.834113
  • Qin, J., Ma, Q., Shi, Y., & Wang, L. (2016). Recent advances in consensus of multi-agent systems: A brief survey. IEEE Transactions on Industrial Electronics, 64(6), 4972–4983. https://doi.org/10.1109/TIE.2016.2636810
  • Qin, L., He, X., & Zhou, D. H. (2017). Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults. International Journal of Control, 90(10), 2227–2248. https://doi.org/10.1080/00207179.2016.1242026
  • Ruan, M., Ahmad, M., & Wang, Y. (2017). Secure and privacy-preserving average consensus. In Proceedings of the 2017 Workshop on Cyber-physical Systems Security and PrivaCy (pp. 123–129). Association for Computing Machinery.
  • Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm. Science (New York, N.Y.), 345(6198), 795–799. https://doi.org/10.1126/science.1254295
  • Sakthivel, R., Sakthivel, R., Kaviarasan, B., Lee, H., & Lim, Y. (2019). Finite-time leaderless consensus of uncertain multi-agent systems against time-varying actuator faults. Neurocomputing, 325, 159–171. https://doi.org/10.1016/j.neucom.2018.10.020
  • Shen, B., Wang, Z., & Qiao, H. (2016). Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements. IEEE Transactions on Neural Networks and Learning Systems, 28(5), 1152–1163. https://doi.org/10.1109/TNNLS.2016.2516030
  • Shen, B., Wang, Z., Wang, D., & Li, Q. (2019). State-saturated recursive filter design for stochastic time-varying nonlinear complex networks under deception attacks. IEEE Transactions on Neural Networks and Learning Systems, 31(10), 3788–3800. https://doi.org/10.1109/TNNLS.5962385
  • Shen, B., Wang, Z., Wang, D., Luo, J., Pu, H., & Peng, Y. (2019). Finite-horizon filtering for a class of nonlinear time-delayed systems with an energy harvesting sensor. Automatica, 100(9), 144–152. https://doi.org/10.1016/j.automatica.2018.11.010
  • Shen, Q., Jiang, B., Shi, P., & Zhao, J. (2014). Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multiagent systems with time-varying actuator faults. IEEE Transactions on Fuzzy Systems, 22(3), 494–504. https://doi.org/10.1109/TFUZZ.2013.2260757
  • Tian, E., Wang, Z., Zou, L., & Yue, D. (2019a). Probabilistic-constrained filtering for a class of nonlinear systems with improved static event-triggered communication. International Journal of Robust and Nonlinear Control, 29(5), 1484–1498. https://doi.org/10.1002/rnc.v29.5
  • Tian, E., Wang, Z., Zou, L., & Yue, D. (2019b). Chance-constrained H∞ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case. Automatica, 107(3), 296–305. https://doi.org/10.1016/j.automatica.2019.05.039
  • Wang, L., & Wu, Z. (2021). Distributed secure consensus for first-order multi-agent systems under replay attacks. In 2021 International Conference on Computer, Control and Robotics (ICCCR) (pp. 250–255). Institute of Electrical and Electronics Engineers Inc.
  • Wang, M., Wang, Z., Chen, Y., & Sheng, W. (2019). Event-based adaptive neural tracking control for discrete-time stochastic nonlinear systems: A triggering threshold compensation strategy. IEEE Transactions on Neural Networks and Learning Systems, 31(6), 1968–1981. https://doi.org/10.1109/TNNLS.5962385
  • Wang, M., Wang, Z., Dong, H., & Han, Q. L. (2020). A novel framework for backstepping-based control of discrete-time strict-feedback nonlinear systems with multiplicative noises. IEEE Transactions on Automatic Control, 66(4), 1484–1496. https://doi.org/10.1109/TAC.2020.2995576
  • Wang, X., & Yang, G. H. (2019). Fault-tolerant consensus tracking control for linear multiagent systems under switching directed network. IEEE Transactions on Cybernetics, 50(5), 1921–1930. https://doi.org/10.1109/TCYB.6221036
  • Wang, Y., Song, Y., Krstic, M., & Wen, C. (2016). Fault-tolerant finite time consensus for multiple uncertain nonlinear mechanical systems under single-way directed communication interactions and actuation failures. Automatica, 63(4), 374–383. https://doi.org/10.1016/j.automatica.2015.10.049
  • Wang, Z., Huang, B., & Unbehauen, H. (2001). Robust H∞ observer design of linear time-delay systems with parametric uncertainty. Systems & Control Letters, 42(4), 303–312. https://doi.org/10.1016/S0167-6911(00)00100-6
  • Wu, Y., Wang, Z., Ding, S., & Zhang, H. (2018). Leader-follower consensus of multi-agent systems in directed networks with actuator faults. Neurocomputing, 275, 1177–1185. https://doi.org/10.1016/j.neucom.2017.09.066
  • Xia, J., Jiang, B., & Zhang, K. (2021). Resilient observer design of sensor fault estimation for discrete-time multi-agent systems: A distributed approach. International Journal of Robust and Nonlinear Control, 31(18), 9604–9618. https://doi.org/10.1002/rnc.v31.18
  • Yan, B., Wu, C., & Shi, P. (2019). Formation consensus for discrete-time heterogeneous multi-agent systems with link failures and actuator/sensor faults. Journal of the Franklin Institute, 356(12), 6547–6570. https://doi.org/10.1016/j.jfranklin.2019.03.028
  • Yang, G. H., & Ye, D. (2010). Reliable H∞ control of linear systems with adaptive mechanism. IEEE Transactions on Automatic Control, 55(1), 242–247. https://doi.org/10.1109/TAC.2009.2036293
  • Yang, H., Han, Q.-L., Ge, X., Ding, L., Xu, Y., Jiang, B., & Zhou, D. (2020). Fault-tolerant cooperative control of multiagent systems: A survey of trends and methodologies. IEEE Transactions on Industrial Informatics, 16(1), 4–17. https://doi.org/10.1109/TII.9424
  • Yang, Y., Xu, H., & Yue, D. (2019). Input-observer event-based secure consensus control of a linear multi-agent system under deception attacks. In 2019 Chinese Automation Congress (CAC) (pp. 1374–1379). Institute of Electrical and Electronics Engineers Inc.
  • Ye, D., Chen, M.-M., & Yang, H.-J. (2018). Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics. IEEE Transactions on Cybernetics, 49(3), 757–767. https://doi.org/10.1109/TCYB.6221036
  • Ye, D., Zhao, X., & Cao, B. (2016). Distributed adaptive fault-tolerant consensus tracking of multi-agent systems against time-varying actuator faults. IET Control Theory & Applications, 10(2), 554–563. https://doi.org/10.1049/cth2.v10.5
  • Yuan, Y., Yuan, H., Wang, Z., Guo, L., & Yang, H. (2017). Optimal control for networked control systems with disturbances: a delta operator approach. IET Control Theory & Applications, 11(9), 1325–1332. https://doi.org/10.1049/cth2.v11.9
  • Yue, W., Wang, Z., Liu, W., Tian, B., Lauria, S., & Liu, X. (2021). An optimally weighted user- and item-based collaborative filtering approach to predicting baseline data for Friedreich's Ataxia patients. Neurocomputing, 419(1), 287–294. https://doi.org/10.1016/j.neucom.2020.08.031
  • Yue, W., Wang, Z., Zhang, J., & Liu, X. (2021). An overview of recommendation techniques and their applications in healthcare. IEEE/CAA Journal of Automatica Sinica, 8(4), 701–717. https://doi.org/10.1109/JAS.6570654
  • Zhang, D., Feng, G., Shi, Y., & Srinivasan, D. (2021). Physical safety and cyber security analysis of multi-agent systems: A survey of recent advances. IEEE/CAA Journal of Automatica Sinica, 8(2), 319–333. https://doi.org/10.1109/JAS.6570654
  • Zhang, D., Tang, Y., Ding, Z., & Qian, F. (2019). Event-based resilient formation control of multiagent systems. IEEE Transactions on Cybernetics, 51(5), 2490–2503. https://doi.org/10.1109/TCYB.2019.2910614
  • Zhang, D., Zhang, W. A., Yu, L., & Wang, Q. G. (2015). Distributed fault detection for a class of large-scale systems with multiple incomplete measurements. Journal of the Franklin Institute, 352(9), 3730–3749. https://doi.org/10.1016/j.jfranklin.2014.11.006
  • Zhang, X. M., Han, Q. L., Wang, Z., & Zhang, B. L. (2017). Neuronal state estimation for neural networks with two additive time-varying delay components. IEEE Transactions on Cybernetics, 47(10), 3184–3194. https://doi.org/10.1109/TCYB.2017.2690676
  • Zhao, L., & Yang, G. H. (2020). Adaptive fault-tolerant control for nonlinear multi-agent systems with DoS attacks. Information Sciences, 526(3), 39–53. https://doi.org/10.1016/j.ins.2020.03.083
  • Zhao, Y., He, X., Zhang, J., Ji, H., Zhou, D., & Pecht, M. G. (2021). Detection of intermittent faults based on an optimally weighted moving average T2 control chart with stationary observations. Automatica, 123(7), Article 109298. https://doi.org/10.1016/j.automatica.2020.109298
  • Zhou, B., Wang, W., & Ye, H. (2014). Cooperative control for consensus of multi-agent systems with actuator faults. Computers & Electrical Engineering, 40(7), 2154–2166. https://doi.org/10.1016/j.compeleceng.2014.04.015
  • Zhu, J. W., Yang, G. H., Wang, H., & Wang, F. (2016). Fault estimation for a class of nonlinear systems based on intermediate estimator. IEEE Transactions on Automatic Control, 61(9), 2518–2524. https://doi.org/10.1109/TAC.2015.2491898
  • Zhu, J. W., Yang, G. H., Zhang, W. A., & Yu, L. (2018). Cooperative fault tolerant tracking control for multiagent systems: An intermediate estimator-based approach. IEEE Transactions on Cybernetics, 48(10), 2972–2980. https://doi.org/10.1109/TCYB.2017.2753383
  • Zou, L., Wang, Z., Gao, H., & Liu, X. (2016). State estimation for discrete-time dynamical networks with time-varying delays and stochastic disturbances under the round-robin protocol. IEEE Transactions on Neural Networks and Learning Systems, 28(5), 1139–1151. https://doi.org/10.1109/TNNLS.5962385
  • Zou, L., Wang, Z., Geng, H., & Liu, X. (2021). Set-membership filtering subject to impulsive measurement outliers: A recursive algorithm. IEEE/CAA Journal of Automatica Sinica, 8(2), 377–388. https://doi.org/10.1109/JAS.6570654
  • Zou, L., Wang, Z., Han, Q. L., & Zhou, D. (2021). Moving horizon estimation of networked nonlinear systems with random access protocol. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(5), 2937–2948. https://doi.org/10.1109/TSMC.2019.2918002
  • Zou, L., Wang, Z., Hu, J., & Zhou, D. (2020). Moving horizon estimation with unknown inputs under dynamic quantization effects. IEEE Transactions on Automatic Control, 65(12), 5368–5375. https://doi.org/10.1109/TAC.9
  • Zou, L., Wang, Z., & Zhou, D. (2020). Moving horizon estimation with non-uniform sampling under component-based dynamic event-triggered transmission. Automatica, 120(3), Article 109154. https://doi.org/10.1016/j.automatica.2020.109154
  • Zuo, Z., Zhang, J., & Wang, Y. (2015). Adaptive fault tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems. IEEE Transactions on Industrial Electronics, 62(6), 3923–3931. https://doi.org/10.1109/TIE.2014.2367034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.