279
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Non-fragile sliding mode observer based fault estimation for interval type-2 fuzzy singular fractional order systems

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1451-1470 | Received 07 Oct 2022, Accepted 03 Feb 2023, Published online: 16 Feb 2023

References

  • Babaghasabha, R., Khosravi, M., & Taghirad, H. (2016). Adaptive robust control of fully constrained cable robots: Singular perturbation approach. Nonlinear Dynamics, 85(1), 607–620. https://doi.org/10.1007/s11071-016-2710-8
  • Boukal, Y., Darouach, M., Zasadzinski, M., & Radhy, N. (2017). Robust H∞ observer-based control of fractional-order systems with gain parametrization. IEEE Transactions on Automatic Control, 62(11), 5710–5723. https://doi.org/10.1109/TAC.2017.2690140
  • Chao, F., Zhou, D. J., Lin, C. M., Yang, L. Z., Zhou, C. G., & Shang, C. J. (2020). Type-2 fuzzy hybrid controller network for robotic systems. IEEE Transactions on Cybernetics, 50(8), 3778–3792. https://doi.org/10.1109/TCYB.6221036
  • Chen, L. H., Zhao, Y. X., Fu, S. S., Liu, M., & Qiu, J. B. (2019). Fault estimation observer design for descriptor switched systems with actuator and sensor failures. IEEE Transactions on Circuits and Systems-I: Regular Papers, 66(2), 810–819. https://doi.org/10.1109/TCSI.2018.2871888
  • Chen, L. J., Edwards, C., & Alwi, H. (2019). Sensor fault estimation using LPV sliding mode observers with erroneous scheduling parameters. Automatica, 101(2019), 66–77. https://doi.org/10.1016/j.automatica.2018.10.055
  • Davila, J., Fridman, L., & Levant, A. (2005). Second-order sliding-mode observer for mechanical systems. IEEE Transactions on Automatica Control, 50(11), 1785–1789. https://doi.org/10.1109/TAC.2005.858636
  • Feng, Z. G., & Shi, P. (2017). Admissibilization of singular interval-valued fuzzy systems. IEEE Transactions on Fuzzy Systems, 25(6), 1765–1776. https://doi.org/10.1109/TFUZZ.2016.2633373
  • Gao, W. B., Wang, Y. F., & Huang, J. C. (1995). Discrete-time variable structure control systems. IEEE Transactions on Industrial Electronics, 42(2), 117–122. https://doi.org/10.1109/41.370376
  • Huang, J., Ri, S., Fukuda, T., & Wang, Y. J. (2019). A disturbance observer based sliding mode control for a class of underactuated robotic system with mismatched uncertainties. IEEE Transactions on Automatica Control, 64(6), 2480–2487. https://doi.org/10.1109/TAC.9
  • Kaczorek, T. (2011). Singular fractional linear systems and electrical circuits. International Journal of Applied Mathematics and Computer Sciences, 21(2), 379–384. https://doi.org/10.2478/v10006-011-0028-8
  • Khanday, F. A., Kant, N. A., Dar, M. R., Zulkifli, T. Z. A., & Psychalinos, C. (2019). Low-voltage low-power integrable CMOS circuit implementation of integer- and fractional-order FitzHugh-Nagumo neuron model. IEEE Transactions on Neural Networks and Learning Systems, 30(7), 2018–2122. https://doi.org/10.1109/TNNLS.5962385
  • Kommuri, S. K., Defoort, M., Karim, H. R., & Veluvolu, K. C. (2016). A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles. IEEE Transactions on Industrial Electronics, 63(12), 7671–7681. https://doi.org/10.1109/TIE.2016.2590993
  • Kuppusamy, S., & Joo, Y. H. (2022). Stabilization of interval type-2 fuzzy-based reliable sampled-data control systems. IEEE Transactions on Cybernetics, 52(2), 1312–1320. https://doi.org/10.1109/TCYB.2020.3001609
  • Lam, H. K., & Seneviratne, L. D. (2008). Stability analysis fo interval type-2 fuzzy-model-based control systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 38(3), 617–628. https://doi.org/10.1109/TSMCB.2008.915530
  • Li, H. Y., Wang, J. H., & Shi, P. (2016). Output-feedback based sliding mode control for fuzzy systems with actuator saturation. IEEE Transactions on Fuzzy Systems, 24(6), 1282–1293. https://doi.org/10.1109/TFUZZ.2015.2513085
  • Li, H. Y., Wu, C. W., Wu, L. G., Lam, H. K., & Gao, Y. B. (2016). Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Transactions on Cybernetics, 46(3), 668–678. https://doi.org/10.1109/TCYB.2015.2413134
  • Li, J. H., Zhang, Q. L., Yan, X. G., & Spurgeon, S. K. (2019). Observer-based fuzzy integral sliding mode control for nonlinear descriptor systems. IEEE Transactions on Fuzzy Systems, 26(5), 2818–2832. https://doi.org/10.1109/TFUZZ.91
  • Li, R. C., & Yang, Y. (2021). Sliding-mode observer-based fault reconstruction for T-S fuzzy descriptor systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(8), 5046–5055. https://doi.org/10.1109/TSMC.2019.2945998
  • Li, R. C., & Zhang, X. F. (2020). Adaptive sliding mode observer design for a class of T-S fuzzy descriptor fractional order systems. IEEE Transactions on Fuzzy Systems, 28(9), 1951–1960. https://doi.org/10.1109/TFUZZ.91
  • Li, X. H., Zhu, F. L., Chakrabarty, A., & Zak, S. H. (2016). Non-fragile fault-tolerant fuzzy observer-based controller design for nonlinear systems. IEEE Transactions on Fuzzy Systems, 24(6), 1679–1689. https://doi.org/10.1109/TFUZZ.2016.2540070
  • Li, Y. M., Wei, Y. H., Chen, Y. Q., & Wang, Y. (2021). A universal framework of the generalized Kalman–Yakubovich–Popov lemma for singular fractional-order systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(8), 5209–5217. https://doi.org/10.1109/TSMC.2019.2945358
  • Lin, C., Chen, B., Shi, P., & Yu, J. P. (2018). Necessary and sufficient conditions of observer-based stabilization for a class of fractional-order descriptor systems. Systems & Control Letters, 112(2018), 31–35. https://doi.org/10.1016/j.sysconle.2017.12.004
  • Lin, D., Liao, X., Dong, L., Yang, R., Samson, S. Y., Iu, H. H. C., Fernando, T., & Li, Z. (2021). Experimental study of fractional-order RC circuit model using the Caputo and Caputo-Fabrizio derivatives. IEEE Transactions on Circuits and Systems-I: Regular Papers, 68(3), 1034–1044. https://doi.org/10.1109/TCSI.2020.3040556
  • Liu, J., Ran, G., Huang, Y., Han, C., Yu, Y., & Sun, C. (2022). Adaptive event-triggered finite-time dissipative filtering for interval type-2 fuzzy markov jump systems with asynchronous modes. IEEE Transactions on Cybernetics, 52(9), 9709–9721. https://doi.org/10.1109/TCYB.2021.3053627
  • Liu, M., Zhang, L. X., Shi, P., & Zhao, Y. X. (2018). Fault estimation sliding-mode observer with digital communication constraints. IEEE Transactions on Automatica Control, 63(10), 3434–3441. https://doi.org/10.1109/TAC.9
  • Lu, J. G., & Chen, Y. Q. (2010). Robust stability and stabilization of fractional-order interval systems with the fractional order α:0<α<1 case. IEEE Transactions on Automatic Control, 55(1), 152–158. https://doi.org/10.1109/TAC.2009.2033738
  • Luo, Y., Wang, Z., Chen, Y., & Yi, X. (2021). H∞ state estimation for coupled stochastic complex networks with periodical communication protocol and intermittent nonlinearity switching. IEEE Transactions on Neural Networks and Learning Systems, 8(2), 1414–1425. https://doi.org/10.1109/TNSE.2021.3058220
  • Luo, Y., Wang, Z., Sheng, W., & Yue, D. (2021). State estimation for discrete time-delayed impulsive neural networks under communication constraints: A delay-range-dependent approach. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3105449
  • Marir, S., Chadli, M., & Bouagada, D. (2017). New admissibility conditions for singular linear continuous-time fractional-order systems. Journal of the Franklin Institute, 354(2), 752–766. https://doi.org/10.1016/j.jfranklin.2016.10.022
  • Matigbluenon, D. (1996). Stability results on fractional differential equations with applications to control processing. Computational Engineering in Systems Applications, 2(1996), 963–968.
  • Mohammadzadeh, A., Ghaemi, S., Kaynak, O., & Khanmohammadi, S. (2016). Observer-based method for synchronization of uncertain fractional order chaotic systems by the use of a general type-2 fuzzy system. Applied Soft Computing, 49(2016), 544–560. https://doi.org/10.1016/j.asoc.2016.08.016
  • Mujumdar, A., Tamhane, B., & Kurode, S. (2015). Observer-based sliding mode control for a class of noncommensurate fractional-order systems. IEEE/ASME Transactions on Mechatronics, 20(5), 2504–2512. https://doi.org/10.1109/TMECH.2014.2386914
  • N'Doye, I., Darouach, M., Zasadzinski, M., & Radhy, N. E. (2013). Robust stabilization of uncertain descriptor fractional-order systems. Automatica, 49(6), 1907–1913. https://doi.org/10.1016/j.automatica.2013.02.066
  • Podlubny, I. (1999). Fractional-order systems and PIλDμ-controllers. IEEE Transactions on Automatic Control, 44(1), 208–214. https://doi.org/10.1109/9.739144
  • Sabatier, J., Moze, M., & Farges, C. (2010). LMI stability conditions for fractional order systems. Computers and Mathematics with Applications, 59(5), 1594–1609. https://doi.org/10.1016/j.camwa.2009.08.003
  • Sandberg, H., & Murray, R. (2009). Model reduction of interconnected linear systems. Optimal Control Applications & Methods, 30(3), 225–245. https://doi.org/10.1002/oca.v30:3
  • Sun, X. J., & Zhang, Q. L. (2019). Admissibility analysis for interval type-2 fuzzy descriptor systems based on sliding mode control. IEEE Transactions on Cybernetics, 49(8), 3032–3040. https://doi.org/10.1109/TCYB.6221036
  • Sun, X. J., & Zhang, Q. L. (2020). Observer-based adaptive sliding mode control for T-S fuzzy singular systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(11), 4438–4446. https://doi.org/10.1109/TSMC.6221021
  • Tang, X. D., Tao, G., & Joshi, S. M. (2007). Adaptive actuator failure compensation for nonlinear MIMO systems with an aircraft control application. Automatica, 43(11), 1869–1883. https://doi.org/10.1016/j.automatica.2007.03.019
  • Tavazoei, M., Haeri, M., Siami, M., & Bolouki, S. (2010). Maximum number of frequencies in oscillations generated by fractional order LTI systems. IEEE Transactions on Signal Processing, 58(8), 4003–4012. https://doi.org/10.1109/TSP.2010.2049568
  • Tong, S. C., Huo, B. Y., & Li, Y. M. (2014). Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Transactions on Fuzzy Systems, 22(1), 1–15. https://doi.org/10.1109/TFUZZ.2013.2241770
  • Wang, J., Liu, X., Xia, J., Shen, H., & Park, J. H. (July 2022). Quantized interval type-2 fuzzy control for persistent dwell-time switched nonlinear systems with singular perturbations. IEEE Transactions on Cybernetics, 52(7), 6638–6648. https://doi.org/10.1109/TCYB.2021.3049459
  • Wei, Y. H., Tse, P. E., Yao, Z., & Wang, Y. (2017). The output feedback control synthesis for a class of singular fractional order systems. ISA Transactions, 69(2017), 1–9. https://doi.org/10.1016/j.isatra.2017.04.020
  • Wei, Y. H., Wang, J. C., Liu, T. Y., & Wang, Y. (2019). Sufficient and necessary conditions for stabilizing singular fractional order systems with partially measurable state. Journal of the Franklin Institute, 356(4), 1975–1990. https://doi.org/10.1016/j.jfranklin.2019.01.022
  • Yan, J. J., & Yang, G. H. (2020). Adaptive observer-based fault-tolerant tracking control for T-S fuzzy systems with mismatched faults. IEEE Transactions on Fuzzy Systems, 28(1), 134–147. https://doi.org/10.1109/TFUZZ.91
  • Yang, H. Y., & Yin, S. (2019). Reduced-order sliding-mode-observer-based fault estimation for Markov jump systems. IEEE Transactions on Automatic Control, 64(11), 4733–4740. https://doi.org/10.1109/TAC.9
  • Yang, Y., Niu, Y., & Lam, H. -K. (2022). Sliding-mode control for interval type-2 fuzzy systems: event-triggering wtod scheme. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2022.3163452
  • Yin, S., Gao, H., Qiu, J., & Kaynak, O. (2017). Descriptor reduced-order sliding mode observers design for switched systems with sensor and actuator faults. Automatica, 76(2017), 282–292. https://doi.org/10.1016/j.automatica.2016.10.025
  • Yu, Y., Jiao, Z., & Sun, C. Y. (2013). Sufficient and necessary condition of admissibility for fractional-order singular system. Acta Automatica Sinica, 39(12), 2160–216. https://doi.org/10.1016/S1874-1029(14)60003-3
  • Zeng, Y., Lam, H.-K., Xiao, B., & Wu, L. (2022). L2−L∞ control of discrete-time state-delay interval type-2 fuzzy systems via dynamic output feedback. IEEE Transactions on Cybernetics, 52(6), 4198–4208. https://doi.org/10.1109/TCYB.2020.3024754
  • Zhan, T., Liu, X., & Ma, S. (2018). A new singular system approach to output feedback sliding mode control for fractional order nonlinear systems. Journal of the Franklin Institute, 355(14), 6746–676. https://doi.org/10.1016/j.jfranklin.2018.06.039
  • Zhang, J. C., Zhu, F. L., Karimi, H. R., & Wang, F. N. (2019). Observer-based sliding mode control for T-S fuzzy descriptor systems with time delay. IEEE Transactions on Fuzzy Systems, 27(10), 2009–2023. https://doi.org/10.1109/TFUZZ.91
  • Zhang, J. X., & Yang, G. H. (2020). Adaptive fuzzy fault-tolerant control of uncertain Euler-Lagrange systems with process faults. IEEE Transactions on Fuzzy Systems, 28(10), 2619–2630. https://doi.org/10.1109/TFUZZ.91
  • Zhang, L. L., & Yang, G. H. (2020). Fault-estimation-based output-feedback adaptive FTC for uncertain nonlinear systems with actuator faults. IEEE Transactions on Industrial Electronics, 67(4), 3065–3075. https://doi.org/10.1109/TIE.41
  • Zhang, Q. H., & Lu, J. G. (2021). H∞ control for singular fractional-order interval systems: the 0<α<1 case. ISA Transactions, 110(2021), 105–116. https://doi.org/10.1016/j.isatra.2020.10.003
  • Zhang, X. F., & Y. Q. Chen (2018). Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: the 0<α<1 case. ISA Transactions, 82(2018), 42–50. https://doi.org/10.1016/j.isatra.2017.03.008
  • Zhang, X. F., Lin, C., Chen, Y. Q., & Boutat, D. (2020). A unified framework of stability theorems for LTI fractional order systems with 0<α<2. IEEE Transactions on Circuits and Systems-II: Express Briefs, 67(12), 3237–3241. https://doi.org/10.1109/TCSII.8920
  • Zhao, Y., Wang, J. H., Yan, F., & Shen, Y. (2019). Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays. Information Sciences, 473(2019), 227–238. https://doi.org/10.1016/j.ins.2018.09.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.