791
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A regularised fast recursive algorithm for fraction model identification of nonlinear dynamic systems

, , ORCID Icon, &
Pages 1616-1638 | Received 18 Apr 2022, Accepted 04 Mar 2023, Published online: 18 Mar 2023

References

  • Andreev, M., & Borulko, V. (2017). Polynomial and rational approximate models of microwave elements. In 2017 XXIIND International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED) (pp. 256–259). IEEE.
  • Austin, A. P., Krishnamoorthy, M., Leyffer, S., Mrenna, S., Mller, J., & Schulz, H. (2021). Practical algorithms for multivariate rational approximation. Computer Physics Communications, 261, 107663. https://doi.org/10.1016/j.cpc.2020.107663.
  • Bai, E.-w., Li, K., Zhao, W., & Xu, W. (2014). Kernel based approaches to local nonlinear non-parametric variable selection. Automatica, 50(1), 100–113. https://doi.org/10.1016/j.automatica.2013.10.010
  • Billings, S., & Mao, K. (1998). Structure detection for nonlinear rational models using genetic algorithms. International Journal of Systems Science, 29(3), 223–231. https://doi.org/10.1080/00207729808929516
  • Billings, S., & Zhu, Q. (1991). Rational model identification using an extended least-squares algorithm. International Journal of Control, 54(3), 529–546. https://doi.org/10.1080/00207179108934174
  • Billings, S., & Zhu, Q. (1994). A structure detection algorithm for nonlinear dynamic rational models. International Journal of Control, 59(6), 1439–1463. https://doi.org/10.1080/00207179408923140
  • Birpoutsoukis, G., Marconato, A., Lataire, J., & Schoukens, J. (2017). Regularized nonparametric volterra kernel estimation. Automatica, 82, 324–327. https://doi.org/10.1016/j.automatica.2017.04.014
  • Castella, M., Pesquet, J.-C., & Marmin, A. (2018). Rational optimization for nonlinear reconstruction with approximate ℓ0 penalization. IEEE Transactions on Signal Processing, 67(6), 1407–1417. https://doi.org/10.1109/TSP.2018.2890065
  • Chen, J., Liu, Y., & Zhu, Q. (2018). Bias compensation recursive algorithm for dual-rate rational models. IET Control Theory & Applications, 12(16), 2184–2193. https://doi.org/10.1049/cth2.v12.16
  • Chen, S., Billings, S. A., & Luo, W. (1989). Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control, 50(5), 1873–1896. https://doi.org/10.1080/00207178908953472
  • Chen, T., Andersen, M. S., Ljung, L., Chiuso, A., & Pillonetto, G. (2014). System identification via sparse multiple kernel-based regularization using sequential convex optimization techniques. IEEE Transactions on Automatic Control, 59(11), 2933–2945. https://doi.org/10.1109/TAC.2014.2351851
  • Curtain, R., & Morris, K. (2009). Transfer functions of distributed parameter systems: A tutorial. Automatica, 45(5), 1101–1116. https://doi.org/10.1016/j.automatica.2009.01.008
  • Deng, J., Li, K., Harkin-Jones, E., Fei, M., & Li, S. (2013). A novel two stage algorithm for construction of RBF neural models based on a-optimality criterion. In 2013 Ninth International Conference On Natural Computation (ICNC) (pp. 1–7). IEEE.
  • Deng, J., Li, K., & Irwin, G. W. (2010). A two-stage algorithm for automatic construction of RBF neural models. In Melecon 2010 15th IEEE Mediterranean Electrotechnical Conference (pp. 166–171). IEEE.
  • Deng, J., Li, K., & Irwin, G. W. (2012). Locally regularised two-stage learning algorithm for rbf network centre selection. International Journal of Systems Science, 43(6), 1157–1170. https://doi.org/10.1080/00207721.2010.545490
  • Du, D., Li, X., Fei, M., & Irwin, G. W. (2012). A novel locally regularized automatic construction method for rbf neural models. Neurocomputing, 98, 4–11. https://doi.org/10.1016/j.neucom.2011.05.045.
  • Du, D., Zhu, M., Li, X., Fei, M., Bu, S., Wu, L., & Li, K. (2022). A review on cybersecurity analysis, attack detection, and attack defense methods in cyber-physical power systems. Journal of Modern Power Systems and Clean Energy, to be published. https://doi.org/10.35833/MPCE.2021.000604.
  • Gambella, C., Ghaddar, B., & Naoum-Sawaya, J. (2021). Optimization problems for machine learning: A survey. European Journal of Operational Research, 290(3), 807–828. https://doi.org/10.1016/j.ejor.2020.08.045
  • Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernel methods in machine learning. The Annals of Statistics, 36(3), 1171–1220. https://doi.org/10.1214/009053607000000677
  • Hong, X., Mitchell, R., Chen, S., Harris, C., Li, K., & Irwin, G. (2008). Model selection approaches for non-linear system identification: A review. International Journal of Systems Science, 39(10), 925–946. https://doi.org/10.1080/00207720802083018
  • Hussein, A. A.-h., & Batarseh, I. (2011). An overview of generic battery models. In 2011 IEEE Power And Energy Society General Meeting (pp. 1–6). IEEE.
  • Jin, R., & Weng, G. (2019). A robust active contour model driven by pre-fitting bias correction and optimized fuzzy c-means algorithm for fast image segmentation. Neurocomputing, 359, 408–419. https://doi.org/10.1016/j.neucom.2019.06.019
  • Kambhampati, C., Mason, J., & Warwick, K. (2000). A stable one-step-ahead predictive control of non-linear systems. Automatica, 36(4), 485–495. https://doi.org/10.1016/S0005-1098(99)00173-9
  • Li, K. (2005). Eng-genes: A new genetic modelling approach for nonlinear dynamic systems. IFAC Proceedings Volumes, 38(1), 162–167. https://doi.org/10.3182/20050703-6-CZ-1902.01105
  • Li, K., & Peng, J.-X. (2007). Neural input selectiona fast model-based approach. Neurocomputing, 70(4), 762–769. https://doi.org/10.1016/j.neucom.2006.10.011
  • Li, K., Peng, J.-X., & Bai, E.-W. (2006). A two-stage algorithm for identification of nonlinear dynamic systems. Automatica, 42(7), 1189–1197. https://doi.org/10.1016/j.automatica.2006.03.004
  • Li, K., Peng, J.-X., & Irwin, G. W. (2005). A fast nonlinear model identification method. IEEE Transactions on Automatic Control, 50(8), 1211–1216. https://doi.org/10.1109/TAC.2005.852557
  • Liang, Z., & Zhang, L. (2021). Support vector machines with the epsilon-insensitive pinball loss function for uncertain data classification. Neurocomputing, 457, 117–127. https://doi.org/10.1016/j.neucom.2021.06.044
  • Luo, X., Chang, X., & Ban, X. (2016). Regression and classification using extreme learning machine based on l1-norm and l2-norm. Neurocomputing, 174, 179–186. https://doi.org/10.1016/j.neucom.2015.03.112
  • Mall, R., & Suykens, J. A. K. (May 2015). Very sparse LSSVM reductions for large-scale data. IEEE Transactions on Neural Networks and Learning Systems, 26(5), 1086–1097. https://doi.org/10.1109/TNNLS.2014.2333879
  • Manela, B., & Biess, A. (2021). Bias-reduced hindsight experience replay with virtual goal prioritization. Neurocomputing, 451, 305–315. https://doi.org/10.1016/j.neucom.2021.02.090
  • Münker, T., & Nelles, O. (2016). Nonlinear system identification with regularized local fir model networks. IFAC-PapersOnLine, 49(5), 61–66. https://doi.org/10.1016/j.ifacol.2016.07.090
  • Neji, Z., & Beji, F.-M. (2000). Neural network and time series identification and prediction. In Proceedings Of The IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives For The New Millennium (Vol. 4, p. 461–466). IEEE.
  • Nelles, O. (2020). Nonlinear system identification, from classical approaches to neural networks, fuzzy models, and gaussian processes. Springer.
  • Nielsen, M. (2019). Neural networks and deep learning. Retrieved from http://neuralnetworksanddeeplearning.com/chap2.html (Online Book).
  • Ohlsson, H., Ljung, L., & Boyd, S. (2010). Segmentation of arx-models using sum-of-norms regularization. Automatica, 46(6), 1107–1111. https://doi.org/10.1016/j.automatica.2010.03.013
  • Paduart, J., Lauwers, L., Swevers, J., Smolders, K., Schoukens, J., & Pintelon, R. (2010). Identification of nonlinear systems using polynomial nonlinear state space models. Automatica, 46(4), 647–656. https://doi.org/10.1016/j.automatica.2010.01.001
  • Piga, D., & Tóth, R. (2014). A bias-corrected estimator for nonlinear systems with outputerror type model structures. Automatica, 50(9), 2373–2380. https://doi.org/10.1016/j.automatica.2014.07.021
  • Pillonetto, G. (2018). System identification using kernel-based regularization: New insights on stability and consistency issues. Automatica, 93, 321–332. https://doi.org/10.1016/j.automatica.2018.03.065
  • Pillonetto, G., & De Nicolao, G. (2010). A new kernel-based approach for linear system identification. Automatica, 46(1), 81–93. https://doi.org/10.1016/j.automatica.2009.10.031
  • Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., & Ljung, L. (2014). Kernel methods in system identification, machine learning and function estimation: A survey. Automatica, 50(3), 657–682. https://doi.org/10.1016/j.automatica.2014.01.001
  • Qiao, J., Meng, X., & Li, W. (2018). An incremental neuronal-activity-based rbf neural network for nonlinear system modeling. Neurocomputing, 302, 1–11. https://doi.org/10.1016/j.neucom.2018.01.001
  • Senhaji, K., Ramchoun, H., & Ettaouil, M. (2020). Training feedforward neural network via multiobjective optimization model using non-smooth l1/2 regularization. Neurocomputing, 410, 1–11. https://doi.org/10.1016/j.neucom.2020.05.066
  • Singh, J., & Dhiman, G. (2021). A survey on machine-learning approaches: Theory and their concepts. Materials Today: Proceedings. Advance online publication. Retrieved from https://www.sciencedirect.com/science/article/pii/S2214785321039298.
  • Suykens, J. A., De Brabanter, J., Lukas, L., & Vandewalle, J. (2002). Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing, 48(1), 85–105. https://doi.org/10.1016/S0925-2312(01)00644-0
  • Swarnakar, J., Sarkar, P., Dey, M., & Singh, L. J. (2017, Dec). Rational approximation of fractional order system in delta domain a unified approach. In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 144–150). IEEE.
  • Tao, J., Wen, S., & Hu, W. (2015). L1-norm locally linear representation regularization multi-source adaptation learning. Neural Networks, 69, 80–98. https://doi.org/10.1016/j.neunet.2015.01.009
  • Tikhonov, A. N., & Glasko, V. B. (1965). Use of the regularization method in non-linear problems. USSR Computational Mathematics and Mathematical Physics, 5(3), 93–107. https://doi.org/10.1016/0041-5553(65)90150-3
  • Torres-Barrán, A., Alaíz, C. M., & Dorronsoro, J. R. (2018). ν-svm solutions of constrained lasso and elastic net. Neurocomputing, 275, 1921–1931. https://doi.org/10.1016/j.neucom.2017.10.029
  • Valencia, E. A., & lvarez, M. A. (2017). Short-term time series prediction using hilbert space embeddings of autoregressive processes. Neurocomputing, 266, 595–605. https://doi.org/10.1016/j.neucom.2017.05.067
  • Waheeb, W., Ghazali, R., & Shah, H. (2019). Nonlinear autoregressive moving-average (NARMA) time series forecasting using neural networks. In 2019 International Conference on Computer and Information Sciences (ICCIS) (pp. 1–5).IEEE.
  • Wang, L., Liu, J., & Qian, F. (2021). Wind speed frequency distribution modeling and wind energy resource assessment based on polynomial regression model. International Journal of Electrical Power and Energy Systems, 130, 106964. https://doi.org/10.1016/j.ijepes.2021.106964
  • Yang, C., Zhu, X., Qiao, J., & Nie, K. (2020). Forward and backward input variable selection for polynomial echo state networks. Neurocomputing, 398, 83–94. https://doi.org/10.1016/j.neucom.2020.02.034
  • Yang, Z., Mourshed, M., Liu, K., Xu, X., & Feng, S. (2020). A novel competitive swarm optimized rbf neural network model for short-term solar power generation forecasting. Neurocomputing, 397, 415–421. https://doi.org/10.1016/j.neucom.2019.09.110
  • Yildiz, B., Bilbao, J., & Sproul, A. (2017). A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renewable and Sustainable Energy Reviews, 73, 1104–1122. https://doi.org/10.1016/j.rser.2017.02.023
  • Zhang, J., Li, K., Irwin, G. W., & Zhao, W. (2012). A regression approach to LS-SVM and sparse realization based on fast subset selection. In 2012 10th World Congress on Intelligent Control and Automation (WCICA) (pp. 612–617). IEEE.
  • Zhang, L., Li, K., Bai, E.-W., & Irwin, G. W. (2015). Two-stage orthogonal least squares methods for neural network construction. IEEE Transactions on Neural Networks and Learning Systems, 26(8), 1608–1621. https://doi.org/10.1109/TNNLS.2014.2346399
  • Zhang, L., Zhang, D., Sun, J., Wei, G., & Bo, H. (2019). Salient object detection by local and global manifold regularized svm model. Neurocomputing, 340, 42–54. https://doi.org/10.1016/j.neucom.2019.02.041
  • Zhao, W., Zhang, J., & Li, K. (2015). An efficient ls-svm-based method for fuzzy system construction. IEEE Transactions on Fuzzy Systems, 23(3), 627–643. https://doi.org/10.1109/TFUZZ.2014.2321594
  • Zhu, Q. (2003). A back propagation algorithm to estimate the parameters of non-linear dynamic rational models. Applied Mathematical Modelling, 27(3), 169–187. https://doi.org/10.1016/S0307-904X(02)00097-5
  • Zhu, Q. (2005). An implicit least squares algorithm for nonlinear rational model parameter estimation. Applied Mathematical Modelling, 29(7), 673–689. https://doi.org/10.1016/j.apm.2004.10.008
  • Zhu, Q., & Billings, S. (1996). Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks. International Journal of Control, 64(5), 871–886. https://doi.org/10.1080/00207179608921662
  • Zhu, Q., Wang, Y., Zhao, D., Li, S., & Billings, S. A. (2015). Review of rational (total) nonlinear dynamic system modelling, identification, and control. International Journal of Systems Science, 46(12), 2122–2133. https://doi.org/10.1080/00207721.2013.849774
  • Zhu, Q., Yu, D., & Zhao, D. (2017). An enhanced linear Kalman filter (enlkf) algorithm for parameter estimation of nonlinear rational models. International Journal of Systems Science, 48(3), 451–461. https://doi.org/10.1080/00207721.2016.1186243
  • Zhu, Q., Zhang, W., Zhang, J., & Sun, B. (2019). U-neural network-enhanced control of nonlinear dynamic systems. Neurocomputing, 352, 12–21. https://doi.org/10.1016/j.neucom.2019.04.008