142
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Finite-time dissipative control design for one-sided Lipschitz nonlinear singular Caputo fractional order systems

, &
Pages 1694-1712 | Received 26 Dec 2022, Accepted 22 Apr 2023, Published online: 04 May 2023

References

  • Abbaszadeh, M., & Marquez, H. J. (2010). Nonlinear observer design for one-sided Lipschitz systems. In Proceedings of the 2010 American control conference (pp. 5284–5289). Baltimore, MD, USA.
  • Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., & De Tommasi, G. (2014). Finite-time stability and control. Springer.
  • Chang, X. H., Zhang, L., & Park, J. H. (2015). Robust static output feedback H∞ control for uncertain fuzzy systems. Fuzzy Sets and Systems, 273, 87–104. https://doi.org/10.1016/j.fss.2014.10.023
  • Chen, G., Yang, J., & Zhou, X. (2022). Finite-time dissipative control for discrete-time stochastic delayed systems with Markovian switching and interval parameters. Communications in Nonlinear Science and Numerical Simulation, 110, Article 106352. https://doi.org/10.1016/j.cnsns.2022.106352
  • Chen, M., Shao, S., & Shi, P. (2017). Robust adaptive control for fractional-order systems with disturbance and saturation. John Wiley & Sons.
  • Cheng, P., He, S., Luan, X., & Liu, F. (2021). Finite-region asynchronous H∞ control for 2D Markov jump systems. Automatica, 129, Article 109590. https://doi.org/10.1016/j.automatica.2021.109590
  • Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A., & Castro-Linares, R. (2015). Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 22(1–3), 650–659. https://doi.org/10.1016/j.cnsns.2014.10.008
  • Feng, Z., Lam, J., & Gao, H. (2011). α-dissipativity analysis of singular time-delay systems. Automatica, 47(11), 2548–2552. https://doi.org/10.1016/j.automatica.2011.06.025
  • Gao, Z., & Liao, X. (2013). Integral sliding mode control for fractional-order systems with mismatched uncertainties. Nonlinear Dynamics, 72(1–2), 27–35. https://doi.org/10.1007/s11071-012-0687-5
  • Hong, D. T., Sau, N. H., & Thuan, M. V. (2022a). New criteria for dissipativity analysis of fractional-order static neural networks. Circuits, Systems, and Signal Processing, 41(4), 2221–2243. https://doi.org/10.1007/s00034-021-01888-2
  • Hong, D. T., Sau, N. H., & Thuan, M. V. (2022b). Output feedback finite-time dissipative control for uncertain nonlinear fractional-order systems. Asian Journal of Control, 24(5), 2284–2293. https://doi.org/10.1002/asjc.v24.5
  • Horn, R. A., & Johnson, C. R. (1985). Matrix analysis. Cambridge University Press.
  • Ji, Y., & Qiu, J. (2015). Stabilization of fractional-order singular uncertain systems. ISA Transactions, 56, 53–64. https://doi.org/10.1016/j.isatra.2014.11.016
  • Ji, Y., Su, L., & Qiu, J. (2016). Design of fuzzy output feedback stabilization for uncertain fractional-order systems. Neurocomputing, 173, 1683–1693. https://doi.org/10.1016/j.neucom.2015.09.041
  • Jiao, S., Shen, H., Wei, Y., Huang, X., & Wang, Z. (2018). Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays. Applied Mathematics and Computation, 336, 338–350. https://doi.org/10.1016/j.amc.2018.05.013
  • Jmal, A., Naifar, O., A. Ben Makhlouf, Derbel, N., & Hammami, M. A. (2018). Sensor fault estimation for fractional-order descriptor one-sided Lipschitz systems. Nonlinear Dynamics, 91(3), 1713–1722. https://doi.org/10.1007/s11071-017-3976-1
  • Kaczorek, T. (2011). Singular fractional linear systems and electrical circuits. International Journal of Applied Mathematics and Computer Science, 21(2), 379–384. https://doi.org/10.2478/v10006-011-0028-8
  • Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Elsevier.
  • Li, S., & Ma, Y. (2018). Finite-time dissipative control for singular Markovian jump systems via quantizing approach. Nonlinear Analysis: Hybrid Systems, 27, 323–340. https://doi.org/10.1016/j.nahs.2017.10.007
  • Li, Y., & He, Y. (2021). Dissipativity analysis for singular Markovian jump systems with time-varying delays via improved state decomposition technique. Information Sciences, 580, 643–654. https://doi.org/10.1016/j.ins.2021.08.092
  • Li, Y., Wei, Y., Yuquan, C., & Wang, Y. (2021). H∞ bounded real lemma for singular fractional-order systems. International Journal of Systems Science, 52(12), 2538–2548. https://doi.org/10.1080/00207721.2021.1891482
  • Liu, Y., Zhang, H., Shi, Z., & Gao, Z. (2022). Neural-network-based finite-time bipartite containment control for fractional-order multi-agent systems. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2022.3143494.
  • Ma, Y., & Chen, M. (2016). Finite time non-fragile dissipative control for uncertain TS fuzzy system with time-varying delay. Neurocomputing, 177, 509–514. https://doi.org/10.1016/j.neucom.2015.11.053
  • Ma, Y., Jia, X., & Liu, D. (2018). Finite-time dissipative control for singular discrete-time Markovian jump systems with actuator saturation and partly unknown transition rates. Applied Mathematical Modelling, 53, 49–70. https://doi.org/10.1016/j.apm.2017.07.035
  • Marir, S., Chadli, M., & Basin, M. V. (2022). Bounded real lemma for singular linear continuous-time fractional-order systems. Automatica, 135, Article 109962. https://doi.org/10.1016/j.automatica.2021.109962
  • Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., & Feliu-Batlle, V. (2010). Fractional-order systems and controls: fundamentals and applications. Springer Science & Business Media.
  • Naifar, O., & Makhlouf, A. B. (2022). Fractional order systems-control theory and applications. Springer International Publishing.
  • Nguyen, C. M., Pathirana, P. N., & Trinh, H. (2018). Robust observer design for uncertain one-sided Lipschitz systems with disturbances. International Journal of Robust and Nonlinear Control, 28(4), 1366–1380. https://doi.org/10.1002/rnc.v28.4
  • Niamsup, P., Thanh, N. T., & Phat, V. N. (2022). Finite-time H∞ control of linear singular fractional differential equations with time-varying delay. IMA Journal of Mathematical Control and Information, 39(2), 773–788. https://doi.org/10.1093/imamci/dnac006
  • Qi, F., Chai, Y., Chen, L., Chen, Y., & Wu, R. (2021). Passivity-based non-fragile control of a class of uncertain fractional-order nonlinear systems. Integration (Tokyo, Japan), 81, 25–33. https://doi.org/10.1016/j.vlsi.2021.05.009
  • Rajchakit, G., Sriraman, R., & Samidurai, R. (2021). Dissipativity analysis of delayed stochastic generalized neural networks with Markovian jump parameters. International Journal of Nonlinear Sciences and Numerical Simulation. https://doi.org/10.1515/ijnsns-2019-0244
  • Ren, C., He, S., Luan, X., Liu, F., & Karimi, H. R. (2020). Finite-time L2-gain asynchronous control for continuous-time positive hidden Markov jump systems via T-S fuzzy model approach. IEEE Transactions on Cybernetics, 51(1), 77–87. https://doi.org/10.1109/TCYB.6221036
  • Sheng, H., Chen, Y., & Qiu, T. (2011). Fractional processes and fractional-order signal processing: Techniques and applications. Springer Science & Business Media.
  • Song, J., Niu, Y., & Wang, S. (2017). Robust finite-time dissipative control subject to randomly occurring uncertainties and stochastic fading measurements. Journal of the Franklin Institute, 354(9), 3706–3723. https://doi.org/10.1016/j.jfranklin.2016.07.020
  • Thanh, N. T., Niamsup, P., & Phat, V. N. (2021). Observer-based finite-time control of linear fractional-order systems with interval time-varying delay. International Journal of Systems Science, 52(7), 1386–1395. https://doi.org/10.1080/00207721.2020.1857879
  • Thanh, N. T., & Phat, V. N. (2019). Switching law design for finite-time stability of singular fractional-order systems with delay. IET Control Theory & Applications, 13(9), 1367–1373. https://doi.org/10.1049/cth2.v13.9
  • Tong, S., & Zhou, H. (2023). Finite-time adaptive fuzzy event-triggered output-feedback containment control for nonlinear multi-agent systems with input saturation. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2023.3245222
  • Wang, Z., Xue, D., & Pan, F. (2021). Observer-based robust control for singular switched fractional order systems subject to actuator saturation. Applied Mathematics and Computation, 411, Article 126538. https://doi.org/10.1016/j.amc.2021.126538
  • Wei, Y., Wang, J., Liu, T., & Wang, Y. (2019). Sufficient and necessary conditions for stabilizing singular fractional order systems with partially measurable state. Journal of the Franklin Institute, 356(4), 1975–1990. https://doi.org/10.1016/j.jfranklin.2019.01.022
  • Zhan, T., & Ma, S. P. (2018). The controller design for singular fractional-order systems with fractional order 0<α<1. The ANZIAM Journal, 60(2), 230–248. https://doi.org/10.1017/S1446181118000202
  • Zhang, Q. H., & Lu, J. G. (2021). H∞ control for singular fractional-order interval systems: The 0<α<1 case. ISA Transactions, 110, 105–116. https://doi.org/10.1016/j.isatra.2020.10.003
  • Zhang, W., Su, H. S., Liang, Y., & Han, Z. Z. (2012). Non-linear observer design for one-sided Lipschitz systems: An linear matrix inequality approach. IET Control Theory & Applications, 6(9), 1297–1303. https://doi.org/10.1049/iet-cta.2011.0386
  • Zhang, X., & Chen, Y. (2018). Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: The 0<α<1 case. ISA Transactions, 82, 42–50. https://doi.org/10.1016/j.isatra.2017.03.008
  • Zhang, X., Yin, Y., Wang, H., & He, S. (2021). Finite-time dissipative control for time-delay Markov jump systems with conic-type non-linearities under guaranteed cost controller and quantiser. IET Control Theory & Applications, 15(4), 489–498. https://doi.org/10.1049/cth2.v15.4
  • Zhang, X., Zhao, Z., & Wang, Q. (2020). Static and dynamic output feedback stabilisation of descriptor fractional order systems. IET Control Theory & Applications, 14(2), 324–333. https://doi.org/10.1049/cth2.v14.2
  • Zulfiqar, A., Rehan, M., & Abid, M. (2016). Observer design for one-sided Lipschitz descriptor systems. Applied Mathematical Modelling, 40(3), 2301–2311. https://doi.org/10.1016/j.apm.2015.09.056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.