132
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Dynamic event-triggered synchronisation control for complex dynamical networks with stochastic attacks and actuator faults

, &
Pages 1755-1773 | Received 11 Oct 2022, Accepted 22 Apr 2023, Published online: 10 May 2023

References

  • Barabsi, A., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Reviews Genetics, 12(1), 56–68. https://doi.org/10.1038/nrg2918
  • Boyd, S., Ghaoui, L. E., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Society for Industrial and Applied Mathematics.
  • Chen, B., Ho, D. W., Hu, G., & Yu, L. (2017). Secure fusion estimation for bandwidth constrained cyber-physical systems under replay attacks. IEEE Transactions on Cybernetics, 48(6), 1862–1876. https://doi.org/10.1109/TCYB.2017.2716115
  • Cui, E., Jing, Y., Gao, X., & Yang, D. (2021). Adaptive synchronization of complex dynamic networks with switching parameters subject to state constraints in power system. Journal of the Franklin Institute, 358(17), 9243–9262. https://doi.org/10.1016/j.jfranklin.2021.08.043
  • Dai, H., Chen, W., Jia, J., Liu, J., & Zhang, Z. (2017). Exponential synchronization of complex dynamical networks with time-varying inner coupling via event-triggered communication. Neurocomputing, 245, 124–132. https://doi.org/10.1016/j.neucom.2017.03.035
  • Ding, D., Wang, Z., Ho, D. W., & Wei, G. (2017). Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks. Automatica, 78, 231–240. https://doi.org/10.1016/j.automatica.2016.12.026
  • Hu, T., He, Z., Zhang, X., Zhong, S., Shi, K., & Zhang, Y. (2022). Adaptive fuzzy control for quasi-synchronization of uncertain complex dynamical networks with time-varying topology via event-triggered communication strategy. Information Sciences, 582(6), 704–724. https://doi.org/10.1016/j.ins.2021.10.036
  • Kaneba, C. M., Mu, X., Li, X., & Wu, X. (2022). Event triggered control for fault tolerant control system with actuator failure and randomly occurring parameter uncertainty. Applied Mathematics and Computation, 415, 126714. https://doi.org/10.1016/j.amc.2021.126714
  • Li, J., Ma, Y., & Fu, L. (2019). Fault-tolerant passive synchronization for complex dynamical networks with Markovian jump based on sampled-data control. Neurocomputing, 350(6684), 20–32. https://doi.org/10.1016/j.neucom.2019.03.059
  • Li, Q., Shen, B., Liang, J., & Shu, H. (2015). Event-triggered synchronization control for complex networks with uncertain inner coupling. International Journal of General Systems, 44(2), 212–225. https://doi.org/10.1080/03081079.2014.973725
  • Li, Q., Shen, B., Wang, Z., Huang, T., & Luo, J. (2018). Synchronization control for a class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach. IEEE Transactions on Cybernetics, 49(5), 1979–1986. https://doi.org/10.1109/TCYB.6221036
  • Li, Q., Wang, Z., Li, N., & Sheng, W. (2019). A dynamic event-triggered approach to recursive filtering for complex networks with switching topologies subject to random sensor failures. IEEE Transactions on Neural Networks and Learning Systems, 31(10), 4381–4388. https://doi.org/10.1109/TNNLS.5962385
  • Li, X., Ahn, C. K., Lu, D., & Guo, S. (2018). Robust simultaneous fault estimation and nonfragile output feedback fault-tolerant control for Markovian jump systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(9), 1769–1776. https://doi.org/10.1109/TSMC.2018.2828123
  • Li, X., & Yang, G. (2015). Adaptive fault-tolerant synchronization control of a class of complex dynamical networks with general input distribution matrices and actuator faults. IEEE Transactions on Neural Networks and Learning Systems, 28(3), 559–569. https://doi.org/10.1109/TNNLS.2015.2507183
  • Li, Y., Shi, D., & Chen, T. (2020). Secure analysis of dynamic networks under pinning attacks against synchronization. Automatica, 111, 108576. https://doi.org/10.1016/j.automatica.2019.108576
  • Liu, L., Zhou, W., Li, X., & Sun, Y. (2019). Dynamic event-triggered approach for cluster synchronization of complex dynamical networks with switching via pinning control. Neurocomputing, 340, 32–41. https://doi.org/10.1016/j.neucom.2019.02.044
  • Ma, Y., Ma, N., & Chen, L. (2018). Synchronization criteria for singular complex networks with Markovian jump and time-varying delays via pinning control. Nonlinear Analysis: Hybrid Systems, 29, 85–99. https://doi.org/10.1016/j.nahs.2017.12.002
  • Mu, X., Li, X., Fang, J., & Wu, X. (2021). Reliable observer-based finite-time H∞ control for networked nonlinear semi-Markovian jump systems with actuator fault and parameter uncertainties via dynamic event-triggered scheme. Information Sciences, 546, 573–595. https://doi.org/10.1016/j.ins.2020.08.098
  • Ning, Z., Wang, T., & Zhang, K. (2022). Dynamic event-triggered security control and fault detection for nonlinear systems with quantization and deception attack. Inform. Sciences, 594, 43–59. https://doi.org/10.1016/j.ins.2022.02.019
  • Pan, R., Tan, Y., Du, D., & Fei, S. (2020). Adaptive event-triggered synchronization control for complex networks with quantization and cyber-attacks. Neurocomputing, 382(3), 249–258. https://doi.org/10.1016/j.neucom.2019.11.096
  • Shao, J., Ye, Z., Zhang, D., Yan, H., & Zhu, J (2022). Injection attack estimation of networked control systems subject to hidden DoS attack. ISA Transactions. https://doi.org/10.1016/j.isatra.2022.02.005
  • Tahoun, A. H., & Arafa, M (2021). Secure control design for nonlinear cyber-physical systems under DoS, replay, and deception cyber-attacks with multiple transmission channels. ISA Transactions. https://doi.org/10.1016/j.isatra.2021.11.033
  • Tang, Z., Park, J. H., Wang, Y., & Feng, J. (2018). Distributed impulsive quasi-synchronization of Lur'e networks with proportional delay. IEEE Transactions on Cybernetics, 49(8), 3105–3115. https://doi.org/10.1109/TCYB.6221036
  • Wang, J., Chen, M., Shen, H., Park, J. H., & Wu, Z. (2017). A Markov jump model approach to reliable event-triggered retarded dynamic output feedback H∞ control for networked systems. Nonlinear Analysis: Hybrid Systems, 26, 137–150. https://doi.org/10.1016/j.nahs.2017.05.004
  • Wang, J., Ru, T., Xia, J., Wei, Y., & Wang, Z. (2019). Finite-time synchronization for complex dynamic networks with semi-Markov switching topologies: An H1 event-triggered control scheme. Applied Mathematics and Computation, 356(4), 235–251. https://doi.org/10.1016/j.amc.2019.03.037
  • Wang, J., Wu, H., Huang, T., Ren, S., & Wu, J. (2016). Passivity and output synchronization of complex dynamical networks with fixed and adaptive coupling strength. IEEE Transactions on Neural Networks and Learning Systems, 29(2), 364–376. https://doi.org/10.1109/TNNLS.2016.2627083
  • Wang, X., Liu, X., She, K., Zhong, S., & Zhong, Q. (2019). Extended dissipative memory sampled-data synchronization control of complex networks with communication delays. Neurocomputing, 347, 1–12. https://doi.org/10.1016/j.neucom.2018.10.073
  • Wang, X., Park, J. H., She, K., Zhong, S., & Shi, L. (2018). Stabilization of chaotic systems with T-S fuzzy model and nonuniform sampling: A switched fuzzy control approach. IEEE Transactions on Fuzzy Systems, 27(6), 1263–1271. https://doi.org/10.1109/TFUZZ.91
  • Wong, W. K., Li, H., & Leung, S. (2012). Robust synchronization of fractional-order complex dynamical networks with parametric uncertainties. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4877–4890. https://doi.org/10.1016/j.cnsns.2012.05.020
  • Yang, X., Yang, Z., & Nie, X. (2014). Exponential synchronization of discontinuous chaotic systems via delayed impulsive control and its application to secure communication. Communications in Nonlinear Science and Numerical Simulation, 19(5), 1529–1543. https://doi.org/10.1016/j.cnsns.2013.09.012
  • Ye, D., Chen, M., & Yang, H. (2018). Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics. IEEE Transactions on Cybernetics, 49(3), 757–767. https://doi.org/10.1109/TCYB.6221036
  • Ye, D., Diao, N., & Zhao, X. (2017). Fault-tolerant controller design for general polynomial-fuzzy-model-based systems. IEEE Transactions on Fuzzy Systems, 26(2), 1046–1051. https://doi.org/10.1109/TFUZZ.91
  • Yogambigai, J., Ali, M. S., Alsulami, H., & Alhodaly, M. S. (2020). Impulsive and pinning control synchronization of Markovian jumping complex dynamical networks with hybrid coupling and additive interval time-varying delays. Communications in Nonlinear Science and Numerical Simulation, 85, 105215. https://doi.org/10.1016/j.cnsns.2020.105215
  • Yoo, S. J. (2019). Neural-network-based adaptive resilient dynamic surface control against unknown deception attacks of uncertain nonlinear time-delay cyberphysical systems. IEEE Transactions on Neural Networks and Learning Systems, 31(10), 4341–4353. https://doi.org/10.1109/TNNLS.5962385
  • Yuan, W., Shi, S., & Ma, Y. (2022). Fixed-time stochastic synchronization of impulsive multi-weighted complex dynamical networks with non-chattering control. Neurocomputing, 475, 53–68. https://doi.org/10.1016/j.neucom.2021.12.031
  • Yue, D., Tian, E., & Han, Q. (2012). A delay system method for designing event-triggered controllers of networked control systems. IEEE Transactions on Automatic Control, 58(2), 475–481. https://doi.org/10.1109/TAC.2012.2206694
  • Zeng, P., Deng, F., Liu, X., & Gao, X. (2021). Event-triggered H∞ control for network-based uncertain Markov jump systems under DoS attacks. Journal of the Franklin Institute, 358(6), 2895–2914. https://doi.org/10.1016/j.jfranklin.2021.01.026
  • Zha, L., Liao, R., Liu, J., Xie, X., Tian, E., & Cao, J (2021). Dynamic event-triggered output feedback control for networked systems subject to multiple cyber attacks. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2021.3125851
  • Zha, L., Tian, E., Xie, X., Gu, Z., & Cao, J. (2018). Decentralized event-triggered H∞ control for neural networks subject to cyber-attacks. Information Sciences, 457–458, 141–155. https://doi.org/10.1016/j.ins.2018.04.018
  • Zhang, S., Yang, Y., Sui, X., & Xu, X. (2019). Finite-time synchronization of memristive neural networks with parameter uncertainties via aperiodically intermittent adjustment. Physica A: Statistical Mechanics and its Applications, 534, 122258. https://doi.org/10.1016/j.physa.2019.122258
  • Zhang, Z., Liang, H., Wu, C., & Ahn, C. K. (2019). Adaptive event-triggered output feedback fuzzy control for nonlinear networked systems with packet dropouts and actuator failure. IEEE Transactions on Fuzzy Systems, 27(9), 1793–1806. https://doi.org/10.1109/TFUZZ.2019.2891236
  • Zhao, C., Zhong, S., Zhong, Q., & Shi, K. (2020). Synchronization of Markovian complex networks with input mode delay and Markovian directed communication via distributed dynamic event-triggered control. Nonlinear Analysis: Hybrid Systems, 36, 100883. https://doi.org/10.1016/j.nahs.2020.100883
  • Zhao, D., Wang, Z., Wei, G., & Han, Q. (2020). A dynamic event-triggered approach to observer-based PID security control subject to deception attacks. Automatica, 120(4), 109128. https://doi.org/10.1016/j.automatica.2020.109128
  • Zheng, C., Liu, S., & Meng, H. (2021). Event-triggered synchronization for semi-Markov jump complex dynamic networks with time-varying delay. Neurocomputing, 458, 390–402. https://doi.org/10.1016/j.neucom.2021.06.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.