213
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Simplified optimised prescribed performance control for high-order multiagent systems with privacy preservation

, , &
Pages 2004-2020 | Received 12 Jan 2023, Accepted 07 May 2023, Published online: 23 May 2023

References

  • Altafini, C. (2020). A system-theoretic framework for privacy preservation in continuous-time multiagent dynamics. Automatica, 122, Article ID 109253. https://doi.org/10.1016/j.automatica.2020.109253
  • Bai, W., Zhou, Q., Li, T., & Li, H. (2020). Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Transactions on Cybernetics, 50(8), 3433–3443. https://doi.org/10.1109/TCYB.6221036
  • Cao, L., Cheng, Z., Liu, Y., & Li, H. (2022). Event-based adaptive NN fixed-time cooperative formation for multiagent systems. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2022.3210269
  • Cao, L., Pan, Y., Liang, H., & Huang, T. (2022). Observer-based dynamic event-triggered control for multiagent systems with time-varying delay. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2022.3226873
  • Cheng, W., Liang, H., & Hu, S. (2022). Event-triggered neural adaptive anti-disturbance control of nonlinear multi-agent systems with asymmetric constraints. International Journal of Systems Science, 53(11), 2461–2476. https://doi.org/10.1080/00207721.2022.2053892
  • Du, H., Wen, G., Chen, G., Cao, J., & Alsaadi, F. E. (2017). A distributed finite-time consensus algorithm for higher-order leaderless and leader-following multiagent systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(7), 1625–1634. https://doi.org/10.1109/TSMC.2017.2651899
  • Du, P., Peng, X., Li, Z., Li, L., & Zhong, W. (2022). Performance-guaranteed adaptive self-healing control for wastewater treatment processes. Journal of Process Control, 116, 147–158. https://doi.org/10.1016/j.jprocont.2022.06.004
  • Du, Z., Xue, H., Ahn, C. K., & Liang, H. (2021). Event-triggered adaptive tracking control for high-order multi-agent systems with unknown control directions. International Journal of Robust and Nonlinear Control, 31(18), 8937–8960. https://doi.org/10.1002/rnc.v31.18
  • Fu, J., Lv, Y., & Yu, W. (2023). Robust adaptive time-varying region tracking control of multi-robot systems. Science China Information Sciences, 66(5), Article ID 159202. https://doi.org/10.1007/s11432-020-3299-2
  • Gao, H., Li, Z., Yu, X., & Qiu, J. (2022). Hierarchical multiobjective heuristic for PCB assembly optimization in a beam-head surface mounter. IEEE Transactions on Cybernetics, 52(7), 6911–6924. https://doi.org/10.1109/TCYB.2020.3040788
  • Hou, M., Shi, W., Fang, L., & Duan, G. (2023). Adaptive dynamic surface control of high-order strict feedback nonlinear systems with parameter estimations. Science China Information Sciences, 66(5), Article ID 159203. https://doi.org/10.1007/s11432-021-3488-6
  • Huang, Z., Mitra, S., & Dullerud, G. (2012). Differentially private iterative synchronous consensus. IProceedings of the 2012 ACM Workshop on Privacy in the Electronic Society, 81–90. https://doi.org/10.1145/2381966
  • Lewis, F., Vrabie, D., & Syrmos, V. (2012). Optimal control. John Wiley & Sons.
  • Li, J., Wu, J., Guo, X., Li, X., & Ai, L. (2017). Global finite-time stabilization for a class of high-order nonlinear systems with multiple unknown control directions. International Journal of Control, Automation and Systems, 15(1), 178–185. https://doi.org/10.1007/s12555-015-0179-8
  • Li, Y., Min, X., & Tong, S. (2020). Adaptive fuzzy inverse optimal control for uncertain strict-feedback nonlinear systems. IEEE Transactions on Fuzzy Systems, 28(10), 2363–2374. https://doi.org/10.1109/TFUZZ.91
  • Li, Y., Min, X., & Tong, S. (2021). Observer-based fuzzy adaptive inverse optimal output feedback control for uncertain nonlinear systems. IEEE Transactions on Fuzzy Systems, 29(6), 1484–1495. https://doi.org/10.1109/TFUZZ.2020.2979389
  • Liang, H., Chang, Z., & Ahn, C. K. (2023). Hybrid event-triggered intermittent control for nonlinear multi-agent systems. IEEE Transactions on Network Science and Engineering. https://doi.org/10.1109/TNSE.2023.3237256
  • Liang, H., Chen, L., Pan, Y., & Lam, H. K. (2022). Fuzzy-based robust precision consensus tracking for uncertain networked systems with cooperative-antagonistic interactions. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2022.3200730
  • Liang, H., Zhang, Y., Huang, T., & Ma, H. (2020). Prescribed performance cooperative control for multiagent systems with input quantization. IEEE Transactions on Cybernetics, 50(5), 1810–1819. https://doi.org/10.1109/TCYB.6221036
  • Lin, G., Li, H., Ahn, C. K., & Yao, D. (2022). Event-based finite-time neural control for human-in-the-loop UAV attitude systems. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2022.3166531
  • Lin, G., Li, H., Ma, H., & Zhou, Q. (2022). Distributed containment control for human-in-the-loop MASs with unknown time-varying parameters. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(12), 5300–5311. https://doi.org/10.1109/TCSI.2022.3205335
  • Lin, W., & Qian, C. (2000). Adaptive regulation of high-order lower-triangular systems: An adding a power integrator technique. Systems & Control Letters, 39(5), 353–364. https://doi.org/10.1016/S0167-6911(99)00114-0
  • Liu, J., Gao, Y., Su, X., Wack, M., & Wu, L. (2019). Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique. IEEE Transactions on Control Systems Technology, 27(3), 1129–1138. https://doi.org/10.1109/TCST.87
  • Liu, L., Na, D., & Xie, X. (2010). Output-feedback stabilization for stochastic high-order nonlinear systems with a ratio of odd integers power. Acta Automatica Sinica, 36(6), 858–864. https://doi.org/10.1016/S1874-1029(09)60039-2
  • Liu, Y., & Yang, G. (2020). Prescribed performance-based consensus of nonlinear multiagent systems with unknown control directions and switching networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(2), 609–616. https://doi.org/10.1109/TSMC.6221021
  • Liu, Y., Yao, D., Wang, L., & Lu, S. (2023). Distributed adaptive fixed-time robust platoon control for fully heterogeneous vehicles. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(1), 264–274. https://doi.org/10.1109/TSMC.2022.3179444
  • Liu, Z., Gao, H., Yu, X., Lin, W., Qiu, J., Rodrłguez-Andina, J. J., & Qu, D. (2023). B-spline wavelet neural network-based adaptive control for linear motor-driven systems via a novel gradient descent algorithm. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2023.3260318
  • Ma, H., Ren, H., Zhou, Q., Li, H., & Wang, Z. (2022). Observer-based neural control of N-link flexible-joint robots. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2022.3203074
  • Mo, Y., & Murray, R. M. (2017). Privacy preserving average consensus. IEEE Transactions on Automatic Control, 62(2), 753–765. https://doi.org/10.1109/TAC.2016.2564339
  • Pan, Y., Li, Q., Liang, H., & Lam, H. K. (2022). A novel mixed control approach for fuzzy systems via membership functions online learning policy. IEEE Transactions on Fuzzy Systems, 30(9), 3812–3822. https://doi.org/10.1109/TFUZZ.2021.3130201
  • Pan, Y., Wu, Y., & Lam, H. K. (2022). Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Transactions on Fuzzy Systems, 30(10), 4359–4368. https://doi.org/10.1109/TFUZZ.2022.3148875
  • Qian, C., & Lin, W. (2001). A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 46(7), 1061–1079. https://doi.org/10.1109/9.935058
  • Qiu, J., Sun, K., Rudas, I. J., & Gao, H. (2020). Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis. IEEE Transactions on Cybernetics, 50(7), 2905–2915. https://doi.org/10.1109/TCYB.6221036
  • Ren, H., Ma, H., Li, H., & Lu, R. (2023). A disturbance observer based intelligent control for nonstrict-feedback nonlinear systems. Science China-Technological Sciences, 66(2), 456–467. https://doi.org/10.1007/s11431-022-2126-7
  • Ren, H., Wang, Y., Liu, M., & Li, H. (2022). An optimal estimation framework of multi-agent systems with random transport protocol. IEEE Transactions on Signal Processing, 70, 2548–2559. https://doi.org/10.1109/TSP.2022.3175020
  • Ruan, M., Gao, H., & Wang, Y. (2019). Secure and privacy-preserving consensus. IEEE Transactions on Automatic Control, 64(10), 4035–4049. https://doi.org/10.1109/TAC.9
  • Shi, P., Sun, W., Yang, X., Rudas, I. J., & Gao, H. (2023). Master–slave synchronous control of dual drive gantry stage with cogging force compensation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(1), 216–225. https://doi.org/10.1109/TSMC.2022.3176952
  • Sun, J., Zhang, H., Wang, Y., & Sun, S. (2022). Fault-tolerant control for stochastic switched IT2 fuzzy uncertain time-delayed nonlinear systems. IEEE Transactions on Cybernetics, 52(2), 1335–1346. https://doi.org/10.1109/TCYB.2020.2997348
  • Wang, J., Gong, Q., Huang, K., Liu, Z., Chen, C. L. P., & Liu, J. (2021). Event-triggered prescribed settling time consensus compensation control for a class of uncertain nonlinear systems with actuator failures. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3129816
  • Wang, M., Wang, Z., Chen, Y., & Sheng, W. (2020a). Adaptive neural event-triggered control for discrete-time strict-feedback nonlinear systems. IEEE Transactions on Cybernetics, 50(7), 2946–2958. https://doi.org/10.1109/TCYB.6221036
  • Wang, M., Wang, Z., Chen, Y., & Sheng, W. (2020b). Event-based adaptive neural tracking control for discrete-time stochastic nonlinear systems: A triggering threshold compensation strategy. IEEE Transactions on Neural Networks and Learning Systems, 31(6), 1968–1981. https://doi.org/10.1109/TNNLS.5962385
  • Wang, M., Wang, Z., Dong, H., & Han, Q. (2021). A novel framework for backstepping-based control of discrete-time strict-feedback nonlinear systems with multiplicative noises. IEEE Transactions on Automatic Control, 66(4), 1484–1496. https://doi.org/10.1109/TAC.2020.2995576
  • Wang, N., Fu, Z., Song, S., & Wang, T. (2022). Barrier-Lyapunov-based adaptive fuzzy finite-time tracking of pure-feedback nonlinear systems with constraints. IEEE Transactions on Fuzzy Systems, 30(4), 1139–1148. https://doi.org/10.1109/TFUZZ.2021.3053322
  • Wang, T., Ma, M., Qiu, J., & Gao, H. (2021). Event-triggered adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with multiple constraints. IEEE Transactions on Fuzzy Systems, 29(6), 1496–1506. https://doi.org/10.1109/TFUZZ.2020.2979668
  • Wang, W., Wang, D., Peng, Z., & Li, T. (2016). Prescribed performance consensus of uncertain nonlinear strict-feedback systems with unknown control directions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(9), 1279–1286. https://doi.org/10.1109/TSMC.2015.2486751
  • Wen, G., Chen, C. L. P., & Ge, S. S. (2021). Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions. IEEE Transactions on Cybernetics, 51(9), 4567–4580. https://doi.org/10.1109/TCYB.2020.3002108
  • Wen, G., Ge, S. S., Chen, C. L. P., Tu, F., & Wang, S. (2019). Adaptive tracking control of surface vessel using optimized backstepping technique. IEEE Transactions on Cybernetics, 49(9), 3420–3431. https://doi.org/10.1109/TCYB.6221036
  • Wu, W., & Tong, S. (2021). Robust adaptive fuzzy control for non-strict feedback switched nonlinear systems with unmodeled dynamics. International Journal of Systems Science, 52(2), 307–320. https://doi.org/10.1080/00207721.2020.1827078
  • Xie, X., & Duan, N. (2010). Output tracking of high-order stochastic nonlinear systems with application to benchmark mechanical system. IEEE Transactions on Automatic Control, 55(5), 1197–1202. https://doi.org/10.1109/TAC.2010.2043004
  • Yin, Y., Niu, B., Jiang, K., Jiang, H., & Wang, H. (2022). Event-triggered adaptive decentralised control for switched interconnected nonlinear systems with unmodeled dynamics and full state constraints. International Journal of Systems Science, 53(8), 1639–1658. https://doi.org/10.1080/00207721.2021.2019346
  • Yoo, S. J. (2013). Distributed consensus tracking for multiple uncertain nonlinear strict-feedback systems under a directed graph. IEEE Transactions on Neural Networks and Learning Systems, 24(4), 666–672. https://doi.org/10.1109/TNNLS.2013.2238554
  • Yu, J., Shi, P., Liu, J., & Lin, C. (2022). Neuroadaptive finite-time control for nonlinear MIMO systems with input constraint. IEEE Transactions on Cybernetics, 52(7), 6676–6683. https://doi.org/10.1109/TCYB.2020.3032530
  • Zhang, D., Zhang, W., Yu, L., & Wang, Q. (2015). Distributed fault detection for a class of large-scale systems with multiple incomplete measurements. Journal of the Franklin Institute, 352(9), 3730–3749. https://doi.org/10.1016/j.jfranklin.2014.11.006
  • Zhang, H., Lewis, F. L., & Qu, Z. (2012). Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs. IEEE Transactions on Industrial Electronics, 59(7), 3026–3041. https://doi.org/10.1109/TIE.2011.2160140
  • Zheng, C., Pang, Z., Wang, J., Sun, J., Liu, G., & Han, Q. (2022). Null-space-based time-varying formation control of uncertain nonlinear second-order multi-agent systems with collision avoidance. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2022.3217585
  • Zheng, X., Li, H., Ahn, C. K., & Yao, D. (2022). NN-based fixed-time attitude tracking control for multiple unmanned aerial vehicles with nonlinear faults. IEEE Transactions on Aerospace and Electronic Systems. https://doi.org/10.1109/TAES.2022.3205566

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.