303
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Adaptive fixed-time output feedback formation control for nonstrict-feedback nonlinear multi-agent systems

ORCID Icon, & ORCID Icon
Pages 2281-2300 | Received 01 Mar 2023, Accepted 11 Jun 2023, Published online: 07 Jul 2023

References

  • Chen, B., Liu, X., Liu, K., & Lin, C. (2009). Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica, 45(6), 1530–1535. https://doi.org/10.1016/j.automatica.2009.02.025
  • Chen, B., Zhang, H., Liu, X., & Lin, C. (2018). Neural observer and adaptive neural control design for a class of nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 29(9), 4261–4271. https://doi.org/10.1109/TNNLS.5962385
  • Chen, M., Wang, H., & Liu, X. (2021). Adaptive fuzzy practical fixed-time tracking control of nonlinear systems. IEEE Transactions on Fuzzy Systems, 29(3), 664–673. https://doi.org/10.1109/TFUZZ.91
  • Cui, R., & Xie, X. (2021). Adaptive state-feedback stabilization of state-constrained stochastic high-order nonlinear systems. Science China Information Sciences, 64. https://doi.org/10.1007/s11432-021-3293-0
  • Hua, C., Wang, Q., & Guan, X. (2009). Adaptive fuzzy output-feedback controller design for nonlinear time-delay systems with unknown control direction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 363–374. https://doi.org/10.1109/TSMCB.2008.2005204
  • Ji, W., Pan, Y., & Zhao, M. (2022). Adaptive fault-tolerant optimized formation control for perturbed nonlinear multiagent systems. International Journal of Robust and Nonlinear Control, 32(6), 3386–3407. https://doi.org/10.1002/rnc.v32.6
  • Li, K., Li, Y., & Zong, G. (2021). Adaptive fuzzy fixed-time decentralized control for stochastic nonlinear systems. IEEE Transactions on Fuzzy Systems, 29(11), 3428–3440. https://doi.org/10.1109/TFUZZ.2020.3022570
  • Li, Y., Li, Y.-X., & Tong, S. (2023). Event-based finite-time control for nonlinear multi-agent systems with asymptotic tracking. IEEE Transactions on Automatic Control, 68(6), 3790–3797. https://doi.org/10.1109/TAC.2022.3197562
  • Li, Y., Zhang, J., & Tong, S. (2021). Fuzzy adaptive optimized leader-following formation control for second-order stochastic multiagent systems. IEEE Transactions on Industrial Informatics, 18(9), 6026–6037. https://doi.org/10.1109/TII.2021.3133927
  • Li, Y., Zhao, Y., Liu, W., & Hu, J. (2022). Adaptive fuzzy predefined-time control for third-order heterogeneous vehicular platoon systems with dead-zone. IEEE Transactions on Industrial Informatics. http://doi.org/10.1109/TII.2022.3221220
  • Liu, D., Liu, Z., Chen, C. L. P., & Zhang, Y. (2021). Distributed adaptive neural fixed-time tracking control of multiple uncertain mechanical systems with actuation dead zones. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(6), 3859–3872. https://doi.org/10.1109/TSMC.2021.3075967
  • Ma, J., Wang, H., & Qiao, J. (2022). Adaptive neural fixed-time tracking control for high-order nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems. http://doi.org/10.1109/TNNLS.2022.3176625
  • Min, H., Xu, S., Li, Y., & Zhang, Z. (2022). Adaptive stabilization of uncertain nonlinear systems under output constraint. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(6), 3957–3966. https://doi.org/10.1109/TSMC.2021.3081630
  • Polyakov, A. (2021). Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control, 57(8), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869
  • Qian, C., & Lin, W. (2001). Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Systems & Control Letters, 42(3), 185–200. https://doi.org/10.1016/S0167-6911(00)00089-X
  • Shi, H., Wang, M., & Wang, C. (2023). Leader–follower formation learning control of discrete-time nonlinear multiagent systems. IEEE Transactions on Cybernetics, 53(2), 1184–1194. https://doi.org/10.1109/TCYB.2021.3110645
  • Tong, S., Min, X., & Li, Y. (2020). Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions. IEEE Transactions on Cybernetics, 50(9), 3903–3913. https://doi.org/10.1109/TCYB.6221036
  • Wang, F., Liu, Z., Zhang, Y., & Chen, B. (2016). Distributed adaptive coordination control for uncertain nonlinear multi-agent systems with dead-zone input. Journal of the Franklin Institute, 353(10), 2270–2289. https://doi.org/10.1016/j.jfranklin.2016.04.002
  • Wang, H., Liu, P. X., & Shi, P. (2017). Observer-based fuzzy adaptive output-feedback control of stochastic nonlinear multiple time-delay systems. IEEE Transactions on Cybernetics, 47(9), 2568–2578. https://doi.org/10.1109/TCYB.2017.2655501
  • Wang, H., Xu, K., & Zhang, H. (2022). Adaptive finite-time tracking control of nonlinear systems with dynamics uncertainties. IEEE Transactions on Automatic Control. http://doi.org/10.1109/TAC.2022.3226703
  • Wang, L., Du, H., Zhang, W., Wu, D., & Zhu, W. (2020). Implementation of integral fixed-time sliding mode controller for speed regulation of PMSM servo system. Nonlinear Dynamics, 102, 185–196. https://doi.org/10.1007/s11071-020-05938-3
  • Wang, M., Wang, Z., Chen, Y., & Sheng, W. (2020). Observer-based fuzzy output-feedback control for discrete-time strict-feedback nonlinear systems with stochastic noises. IEEE Transactions on Cybernetics, 50(8), 3766–3777. https://doi.org/10.1109/TCYB.6221036
  • Wang, M., Wang, Z., Dong, H., & Han, Q.-L. (2020). A novel framework for backstepping-based control of discrete-time strict-feedback nonlinear systems with multiplicative noises. IEEE Transactions on Automatic Control, 66(4), 1484–1496. https://doi.org/10.1109/TAC.2020.2995576
  • Wang, M., Zou, Y., & Yang, C. (2022). System transformation-based neural control for full-state-constrained pure-feedback systems via disturbance observer. IEEE Transactions on Cybernetics, 52(3), 1479–1489. https://doi.org/10.1109/TCYB.2020.2988897
  • Wang, Q., Zhang, Z., & Xie, X.-J. (2023). Globally adaptive neural network tracking for uncertain output-feedback systems. IEEE Transactions on Neural Networks and Learning Systems, 34(2), 814–823. http://doi.org/10.1109/TNNLS.2021.3102274
  • Wang, S., & Tong, W. (2019). Observer-based adaptive fuzzy containment control for multiple uncertain nonlinear systems. IEEE Transactions on Fuzzy Systems, 27(11), 2079–2089. https://doi.org/10.1109/TFUZZ.91
  • Wang, W., Zhou, J., Wen, C., & Long, J. (2022). Adaptive backstepping control of uncertain nonlinear systems with input and state quantization. IEEE Transactions on Automatic Control, 67(12), 6754–6761. https://doi.org/10.1109/TAC.2021.3131958
  • Wang, Y., Long, J., Zhou, J., Huang, J., & Wen, C. (2021). Adaptive backstepping based consensus tracking of uncertain nonlinear systems with event-triggered communication. Automatica, 133, 109841. https://doi.org/10.1016/j.automatica.2021.109841
  • Wu, D., Du, H., Wen, G., & Lü, J. (2019). Fixed-time synchronization control for a class of master-slave systems based on homogeneous method. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(9), 1547–1551. http://doi.org/10.1109/TCSII.2018.2886574
  • Wu, W., & Tong, S. (2023). Fuzzy adaptive consensus control for nonlinear multiagent systems with intermittent actuator faults. IEEE Transactions on Cybernetics, 53(5), 2969–2979. https://doi.org/10.1109/TCYB.2021.3123788
  • Xie, W., Cabecinhas, D., Cunha, R., & Silvestre, C. (2022). Adaptive backstepping control of a quadcopter with uncertain vehicle mass, moment of inertia, and disturbances. IEEE Transactions on Industrial Electronics, 69(1), 549–559. https://doi.org/10.1109/TIE.2021.3055181
  • Xie, X., Qiu, X., & Xia, J. (2023). Enhanced fuzzy state estimation of discrete-time nonlinear circuits via two relaxed measures. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(1), 211–215. http://doi.org/10.1109/TCSII.2022.3202243
  • Xie, X., Xu, C., & Gu, Z. (2022). Further studies on state estimation of discrete-time nonlinear circuits based on a switching-type multi-instant fuzzy observer. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(8), 3505–3509. http://doi.org/10.1109/TCSII.2022.3161686
  • Xu, K., Wang, H., & Liu, P. X. (2023). Adaptive fuzzy finite-time tracking control of nonlinear systems with unmodeled dynamics. Applied Mathematics and Computation, 450, 127992. https://doi.org/10.1016/j.amc.2023.127992
  • Yang, W., Pan, Y., & Liang, H. (2021). Event-triggered adaptive fixed-time NN control for constrained nonstrict-feedback nonlinear systems with prescribed performance. Neurocomputing, 422, 332–344. https://doi.org/10.1016/j.neucom.2020.09.051
  • You, Z., & Wang, F. (2022). Adaptive fast finite-time fuzzy control of stochastic nonlinear systems. IEEE Transactions on Fuzzy Systems, 30(7), 2279–2288. https://doi.org/10.1109/TFUZZ.2021.3078820
  • Yu, J., Zhao, L., Yu, H., & Lin, C. (2019). Barrier Lyapunov functions-based command filtered output feedback control for full-state constrained nonlinear systems. Automatica, 105, 71–79. https://doi.org/10.1016/j.automatica.2019.03.022
  • Yu, L., He, G., Wang, X., & Zhao, S. (2021). Robust fixed-time sliding mode attitude control of tilt trirotor UAV in helicopter mode. IEEE Transactions on Industrial Electronics, 69(10), 10322–10332. https://doi.org/10.1109/TIE.2021.3118556
  • Yu, Y., Guo, J., Ahn, C. K., & Xiang, Z. (2022). Neural adaptive distributed formation control of nonlinear multi-uavs with unmodeled dynamics. IEEE Transactions on Neural Networks and Learning Systems. http://doi.org/10.1109/TNNLS.2022.3157079
  • Yuan, C., Stegagno, P., He, H., & Ren, W. (2021). Cooperative adaptive containment control with parameter convergence via cooperative finite-time excitation. IEEE Transactions on Automatic Control, 66(11), 5612–5618. https://doi.org/10.1109/TAC.2021.3056336
  • Zhang, Y., & Wang, F. (2022). Observer-based fixed-time neural control for a class of nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 2892–2902. https://doi.org/10.1109/TNNLS.2020.3046865
  • Zhang, Z., Wang, Q., Ge, S. S., & Zhang, Y. (2022). Reduced-order filters-based adaptive backstepping control for perturbed nonlinear systems. IEEE Transactions on Cybernetics, 52(8), 8388–8398. https://doi.org/10.1109/TCYB.2021.3049786
  • Zhao, X., Chen, S., Zhang, Z., & Zheng, Y. (2023). Consensus tracking for high-order uncertain nonlinear mass via adaptive backstepping approach. IEEE Transactions on Cybernetics, 53(2), 1248–1259. https://doi.org/10.1109/TFUZZ.2018.2868898
  • Zheng, Y., Li, Y. -X., Che, W. -W., & Hou, Z. (2023). Adaptive NN-based event-triggered containment control for unknown nonlinear networked systems. IEEE Transactions on Neural Networks and Learning Systems, 34(6), 2742–2752. http://doi.org/10.1109/TNNLS.2021.3107623
  • Zhou, J., Wen, C., Wang, W., & Yang, F. (2019). Adaptive backstepping control of nonlinear uncertain systems with quantized states. IEEE Transactions on Automatic Control, 64(11), 4756–4763. https://doi.org/10.1109/TAC.9
  • Zhu, Z., Xia, Y., & Fu, M. (2011). Attitude stabilization of rigid spacecraft with finite-time convergence. International Journal of Robust and Nonlinear Control, 21(6), 686–702. https://doi.org/10.1002/rnc.1624
  • Zong, G., Ren, H., & Karimi, H. R. (2021). Event-triggered communication and annular finite-time H∞ filtering for networked switched systems. IEEE Transactions on Cybernetics, 51(1), 309–317. https://doi.org/10.1109/TCYB.6221036
  • Zuo, Z., & Tie, L. (2016). Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. International Journal of Systems Science, 47(6), 1366–1375. https://doi.org/10.1080/00207721.2014.925608

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.