448
Views
11
CrossRef citations to date
0
Altmetric
Articles

Stress wave propagation in a functionally graded adhesive layer between two identical cylinders

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1146-1181 | Received 10 May 2018, Accepted 03 Aug 2018, Published online: 10 Sep 2018

References

  • Semerdjiev, S.;. Metal to Metal Adhesive Bonding. London: Business Books Ltd. 1970.
  • Adams, R. D.; Wake, W. C. Structural Adhesive Joints in Engineering. London: Elsevier. 1984.
  • Kinloch, A. J. Adhesion and Adhesives. London: Chapman & Hall. 1987.
  • Da Silva, L. F. M.; Öchsner, A. Modeling of Adhesively Bonded Joints. Berlin: Springer. 2008.
  • Kumar, S.; Mittal, K. L. Advances in Modeling and Design of Adhesively Bonded Systems. Beverly: John Wiley. 2013. MA 0915–6106.
  • Srinivas, S.; NASA Technical Note. NASA TN D–7855. 1975.
  • Patrick, R. L.;. Structural Adhesives with Emphasis on Aerospace Applications. New York: Marcel Dekker, Inc. 1976.
  • Lee, D. G. L.; Kim, J. K.; Cho, D. H. Effects of Adhesive Fillers on the Strength of Tubular Single Lap Adhesive Joints. J Adhes Sci Technol, 1999. 13, 1343–1360. doi:10.1163/156856199X00244
  • Ganesh, V. K.; Choo, T. S. Modulus Graded Composite Adherends for Single-Lap Bonded Joints. J Compos Mater, 2002. 36(14), 1757–1767. doi:10.1177/0021998302036014172
  • Apalak, M. K.; Gunes, R. Elastic Flexural Behaviour of an Adhesively Bonded Single Lap Joint with Functionally Graded Adherends. Mater Des, 2007. 28, 1597–1617. doi:10.1016/j.matdes.2006.02.013
  • Qiao, W.; Bao, H.; Li, X.; Gu, Z. Research on Electrical Conductive Adhesives Filled with Mixed Filler. Int. J. Adhes. Adhes., 2014. 48, 159–163. doi:10.1016/j.ijadhadh.2013.07.001
  • Beevers, A.; Ellis, M. D. Impact Behavior of Bonded Mild Steel Lap Joints. Int. J. Adhes. Adhes., 1984. 4, 13–16. doi:10.1016/0143-7496(84)90055-1
  • Vaidyaa, U. K.; Gautama, A. R. S.; Hosurb, M.; Duttac, P. Experimental-Numerical Studies of Transverse Impact Response of Adhesively Bonded Lap Joints in Composite Structures. Int. J. Adhes. Adhes., 2006. 26, 184–198. doi:10.1016/j.ijadhadh.2005.03.013
  • Apalak, M. K.; Yildirim, M. Effect of Adhesive Thickness on Transverse Low-Speed Impact Behavior of Adhesively Bonded Similar and Dissimilar Clamped Plates. J Adhes Sci Technol, 2011. 25, 2587–2613. doi:10.1163/016942411X556015
  • Yildirim, M.; Apalak, M. K. Experimental Investigation on Transverse Low-Speed Impact Behavior of Adhesively Bonded Similar and Dissimilar Clamped Plates. J Adhes Sci Technol, 2014. 28(13), 1219–1242. doi:10.1080/01694243.2013.874969
  • Gunes, R.; Aydin, M.; Apalak, M. K.; Reddy, J. N. Experimental and Numerical Investigations of Low Velocity Impact on Functionally Graded Circular Plates. Compos Part. B: Eng., 2014. 59, 21–32. doi:10.1016/j.compositesb.2013.11.022
  • Rao, M. D.; Zhou, H. Vibration and Damping of a Bonded Tubular Lap Joint. J Sound Vib, 1994. 178, 577–590. doi:10.1006/jsvi.1994.1506
  • Lin, C. C.; Ko, T. C. Free Vibration of Bonded Plates. Comput Struct, 1997. 64, 441–452. doi:10.1016/S0045-7949(96)00133-2
  • He, X.; Oyadiji, S. O. Influence of Adhesive Characteristics on the Transverse Free Vibration of Single Lap-Joint Cantilevered Beams. J. Mater. Process. Technol., 2001. 119, 366–373. doi:10.1016/S0924-0136(01)00936-0
  • Gunes, R.; Apalak, M. K.; Yildirim, M. The Free Vibration Analysis and Optimal Design of an Adhesively Bonded Functionally Graded Single Lap Joint. Int. J. Mechanical Sciences, 2007. 49, 479–499. doi:10.1016/j.ijmecsci.2006.09.010
  • Gunes, R.; Apalak, M. K.; Yildirim, M.; Ozkes, I. Free Vibration Analysis of Adhesively Bonded Single Lap Joints with Wide and Narrow Functionally Graded Plates. Compos Struct., 2010. 92(1), 1–17. doi:10.1016/j.compstruct.2009.06.003
  • Zachary, L. W.; Burger, C. P. Dynamic Wave Propagation in a Single Lap Joint. Exp Mech, 1980. 20(5), 162–166. doi:10.1007/BF02327119
  • Higuchi, I.; Sawa, T.; Okuno, H. Three-Dimensional Finite Element Analysis of Stress Response in Adhesive Butt Joints Subjected to Impact Tensile Loads. J. Adhes., 1999. 69, 59–82. doi:10.1080/00218469908015919
  • Higuchi, I.; Sawa, T.; Okuno, H.; Kato, S. Three-Dimensional Finite Element Analysis of Stress Response in Adhesive Butt Joints Subjected to Impact Bending Moments. J. Adhes., 2003. 79, 1017–1039. doi:10.1080/714906154
  • Sato, C.; Ikegami, K. Dynamic Deformation of Lap Joints and Scarf Joints under Impact Loads. Int. J. Adhes. Adhes., 2000. 20, 17–25. doi:10.1016/S0143-7496(99)00010-X
  • Sawa, T.; Suzuki, Y.; Kido, S. FEM Stress Analysis and Strength of Adhesive Butt Joints of Similar Hollow Cylinders under Static and Impact Tensile Loadings. J. Adhesion Sci. Technol., 2002. 16, 1449–1468. doi:10.1163/156856102320252895
  • Deng, Q.; Yang, Z. Propagation of Guided Waves in Bonded Composite Structures with Tapered Adhesive Layer. Appl Math Model, 2011. 35(11), 5369–5381. doi:10.1016/j.apm.2011.04.042
  • Dorduncu, M.; Apalak, M. K. Stress Wave Propagation in Similar and Dissimilar Adhesively Bonded Circular Cylinders. J Adhes Sci Technol, 2015. 29(8), 778–806. doi:10.1080/01694243.2015.1004782
  • Mori, T.; Tanaka, K. Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions. Acta Metall, 1973. 21, 571–574. doi:10.1016/0001-6160(73)90064-3
  • Benveniste, Y.;. A New Approach to the Application of Mori– Tanaka’s Theory in Composite Materials. Mech Mater, 1987. 6, 147–157. doi:10.1016/0167-6636(87)90005-6
  • Koizumi, M.;. FGM Activities in Japan. Compos Part. B: Eng., 1997. 7(28), 1–4. doi:10.1016/S1359-8368(96)00016-9
  • Raphael, C.;. Variable-Adhesive Bonded Joints. Appl Polym Symp, 1966. 3, 99–108.
  • Sancaktar, E.; Kumar, S. Selective Use of Rubber Toughening to Optimize Lap Joint Strength. J Adhes Sci Technol, 2000. 14, 1265–1296. doi:10.1163/156856100742195
  • Piresa, I.; Quintinoa, L. F. J. D.; Beevers, A. Performance of Bi-Adhesive Bonded Aluminium Lap Joints. Int. J. Adhes. Adhes., 2003. 23, 215–223. doi:10.1016/S0143-7496(03)00024-1
  • Fitton, M. D.; Broughton, I. G. Variable Modulus Adhesives: An Approach to Optimised Joint Performance. Int. J. Adhes. Adhes., 2005. 25, 329–336. doi:10.1016/j.ijadhadh.2004.08.002
  • Kumar, S.;. Analysis of Tubular Adhesive Joints with a Functionally Modulus Graded Bondline Subjected to Axial Loads. Int. J. Adhes. Adhes., 2009. 29, 785–795. doi:10.1016/j.ijadhadh.2009.06.006
  • Da Silva, L. F. M.; Lopes, M. J. C. Q. Joint Strength Optimization by the Mixed-Adhesive Technique. Int. J. Adhes. Adhes., 2009. 29(5), 509–514. doi:10.1016/j.ijadhadh.2008.09.009
  • Stapleton, S. E.; Waas, A. M.; Arnold, S. M. Functionally Graded Adhesives for Composite Joints. Int. J. Adhes. Adhes., 2012. 35, 36–49. doi:10.1016/j.ijadhadh.2011.11.010
  • Kumar, S.; Scanlan, J. P. Stress Analysis of Shaft-Tube Bonded Joints Using a Variational Method. J Adhes, 2010. 86, 369–394. doi:10.1080/00218461003704329
  • Kumar, S.; Scanlan, J. P. On Axisymmetric Adhesive Joints with Graded Interface Stiffness. Int. J. Adhes. Adhes., 2013. 41, 57–72. doi:10.1016/j.ijadhadh.2012.09.001
  • Carbas, R. J. C.; Da Silva, L. F. M.; Madurerira, M. L.; Critchlow, G. W. Modelling of Functionally Graded Adhesive Joints. J Adhes, 2013. 90, 698–716. doi:10.1080/00218464.2013.834255
  • Stein, N.; Mardani, H.; Becker, H. An Efficient Analysis Model for Functionally Graded Adhesive Single Lap Joints. Int. J. Adhes. Adhes., 2016. 70, 117–125. doi:10.1016/j.ijadhadh.2016.06.001
  • Carbas, R. J. C.; Da Silva, L. F. M.; Critchlow, G. W. Adhesively Bonded Functionally Graded Joints by Induction Heating. Int. J. Adhes. Adhes., 2014. 48, 110–118. doi:10.1016/j.ijadhadh.2013.09.045
  • Cherukuri, H. P.; Shawki, T. G. A Finite-Difference Scheme for Elastic Wave Propagation in A Circular Disk. Acoust. Soc. Am., 1996. 100, 2139–2155. doi:10.1121/1.417924
  • Dorduncu, M.; Apalak, M. K.; Cherukuri, H. P. Elastic Wave Propagation in Functionally Graded Circular Cylinders. Composites Part. B: Engineering, 2015. 73, 35–48. doi:10.1016/j.compositesb.2014.12.021
  • Alterman, Z.; Karal, F. C. Propagation of Elastic Waves in Layered Media by Finite Difference Methods. Bull. Seismol Soc. Am., 1968. 5, 367–398.
  • Timoshenko, S.; Goodier, J. N. Theory of Elasticity. New York: McGraw-Hill. 1970.
  • Graff, K. F.;. Wave Motion in Elastic Solids. New York: Dover Publications Inc. 1975.
  • Achenbach, J. D.;. Wave Propagation in Solids. New York: Elsevier. 1976.
  • Davis, J. L.;. Mathematics of Wave Propagation. New Jersey: Princeton University Press. 2000.
  • Friedlander, F. G.;. The Diffraction of Sound Pulses. I. Diffraction by a Semi-Infinite Plane. Proc. R Soc., 1946. 186(1006), 322–344. doi:10.1098/rspa.1946.0046
  • Ilan, A.; Loewenthal, D. Instability of Finite Difference Schemes Due to Boundary Conditions in Elastic Media. Geophys Prospect, 1976. 24, 431–453. doi:10.1111/gpr.1976.24.issue-3
  • Matlab Ver. R2006b, 1994-2012. The Language of Technical Computing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.