515
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the stable and stick-slip crack propagation behaviors in double cantilever beam test

ORCID Icon, , &
Pages 1198-1218 | Received 05 Nov 2018, Accepted 08 Jan 2019, Published online: 25 Jan 2019

References

  • British Standards (BS 7991:2001). Determination of the Mode I Adhesive Fracture Energy of Structure Adhesives Using the Double Cantilever Beam (DCB) and Tapered Double Cantilever Beam (TDCB) Specimens; British Standards Institution: London, 2001.
  • ASTM Standard (D3433-99). Standard Test Method for Fracture Strength in Cleavage of Adhesives in Bonded Metal Joints; ASTM International: West Conshohocken, PA, USA, 2012. DOI:10.1520/D3433-99R12.
  • de Moura, M. F. S. F.; Campilho, R. D. S. G.; Gonçalves, J. P. M. Crack Equivalent Concept Applied to the Fracture Characterization of Bonded Joints under Pure Mode I Loading. Compos. Sci. Technol. 2008, 68, 2224–2230. DOI: 10.1016/j.compscitech.2008.04.003.
  • de Moura, M. F. S. F.; Gonçalves, J. P. M.; Magalhães, A. G. A Straightforward Method to Obtain the Cohesive Laws of Bonded Joints under Mode I Loading. Int. J. Adhes. Adhes. 2012, 39, 54–59. DOI: 10.1016/j.ijadhadh.2012.07.008.
  • He, X. A Review of Finite Element Analysis of Adhesively Bonded Joints. Int. J. Adhes. Adhes. 2011, 31, 248–264. DOI: 10.1016/j.ijadhadh.2011.01.006.
  • Škec, L.; Alfano, G.; Jelenić, G. On, and the Characterisation of the Mode-I Fracture Resistance in Delamination or Adhesive Debonding. Int. J. Solids Struct. 2018, 144-145, 100–122. DOI: 10.1016/j.ijsolstr.2018.04.020.
  • Cordisco, F. A.; Zavattieri, P. D.; Hector, L. G., Jr.; Carlson, B. E. Mode I Fracture along Adhesively Bonded Sinusoidal Interfaces. Int. J. Solids Struct. 2016, 83, 45–64. DOI: 10.1016/j.ijsolstr.2015.12.028.
  • Cognard, J. Y.; Créac’hcadec, R.; Maurice, J. Numerical Analysis of the Stress Distribution in Single-Lap Shear Tests under Elastic Assumption—Application to the Optimisation of the Mechanical Behaviour. Int. J. Adhes. Adhes. 2011, 31, 715–724. DOI: 10.1016/j.ijadhadh.2011.07.001.
  • Mohammed, I.; Liechti, K. M. Cohesive Zone Modeling of Crack Nucleation at Bimaterial Corners. J. Mech. Phys. Solids. 2000, 48, 735–764. DOI: 10.1016/S0022-5096(99)00052-6.
  • Li, S.; Thouless, M. D.; Waas, A. M.; Schroeder, J. A.; Zavattieri, P. D. Use of Mode-I Cohesive-Zone Models to Describe the Fracture of an Adhesively-Bonded Polymer-Matrix Composite. Compos. Sci. Technol. 2005, 65, 281–293. DOI: 10.1016/j.compscitech.2004.07.009.
  • Siegmund, T. A. Numerical Study of Transient Fatigue Crack Growth by Use of an Irreversible Cohesive Zone Model. Int. J. Fatigue. 2004, 26(9), 929–939. DOI: 10.1016/j.ijfatigue.2004.02.002.
  • Campilho, R. D. S. G.; Banea, M. D.; Neto, J. A. B. P.; Da Silva, L. F. M. Modelling Adhesive Joints with Cohesive Zone Models: Effect of the Cohesive Law Shape of the Adhesive Layer. Int. J. Adhes. Adhes. 2013, 44, 48–56. DOI: 10.1016/j.ijadhadh.2013.02.006.
  • Gustafson, P. A.; Waas, A. M. The Influence of Adhesive Constitutive Parameters in Cohesive Zone Finite Element Models of Adhesively Bonded Joints. Int. J. Solids Struct. 2009, 46, 2201–2215. DOI: 10.1016/j.ijsolstr.2008.11.016.
  • Møberg, A.; Budzik, M. K.; Jensen, H. M. Growth from Initial to Self-Similar Shape of an Interface Crack Front. Int. J. Adhes. Adhes. 2018, 83, 59–68. DOI: 10.1016/j.ijadhadh.2018.02.013.
  • Suiker, A. S. J.; Fleck, N. A.; Tunneling, C. Plane-Strain Delamination in Layered Solids. Int. J. Fract. 2004, 125, 1–32. DOI: 10.1023/B:FRAC.0000021064.52949.e2.
  • Noselli, G.; Deshpande, V. S.; Fleck, N. A. An Analysis of Competing Toughening Mechanisms in Layered and Particulate Solids. Int. J. Fract. 2013, 183, 241–258. DOI: 10.1007/s10704-013-9890-8.
  • Srivastava, V. K.; Gries, T.; Veit, D.; Quadflieg, T.; Mohr, B.; Kolloch, M. Effect of Nanomaterial on Mode I and Mode II Interlaminar Fracture Toughness of Woven Carbon Fabric Reinforced Polymer Composites. Eng. Fract. Mech. 2017, 180, 73–86. DOI: 10.1016/j.engfracmech.2017.05.030.
  • Srivastava, V. K.; Gries, T.; Quadflieg, T.; Mohr, B.; Kolloch, M.; Kumar, P. Fracture Behavior of Adhesively Bonded Carbon Fabric Composite Plates with Nano Materials Filled Polymer Matrix under DCB, ENF and SLS Tests. Eng. Fract. Mech. 2018, 202, 275–287. DOI: 10.1016/j.engfracmech.2018.09.030.
  • Ashcroft, I. A.; Hughes, D. J.; Shaw, S. J. Mode I Fracture of Epoxy Bonded Composite Joints: 1. Quasi-Static Loading. Int. J. Adhes. Adhes. 2001, 21, 87–99. DOI: 10.1016/S0143-7496(00)00038-5.
  • Khoramishad, H.; Khakzad, M. Toughening Epoxy Adhesives with Multi-Walled Carbon Nanotubes. J. Adhes. 2018, 94(1), 15–29. DOI: 10.1080/00218464.2016.1224184.
  • Gude, M. R.; Prolongo, S. G.; Gómez-Del Río, T.; Ureña, A. Mode-I Adhesive Fracture Energy of Carbon Fibre Composite Joints with Nanoreinforced Epoxy Adhesives. Int. J. Adhes. Adhes. 2011, 31, 695–703. DOI: 10.1016/j.ijadhadh.2011.06.016.
  • Quan, D.; Murphy, N.; Ivankovic, A. Fracture Behaviour of Epoxy Adhesive Joints Modified with Core-Shell Rubber Nanoparticles. Eng. Fract. Mech. 2017, 182, 566–576. DOI: 10.1016/j.engfracmech.2017.05.032.
  • Ryschenkow, G.; Arribart, H. Adhesion Failure in the Stick-Slip Regime: Optical and AFM Characterizations and Mechanical Analysis. J. Adhes. 1996, 58(1–2), 143–161. DOI: 10.1080/00218469608014403.
  • Baljon, A. R. C.; Robbins, M. O. Energy Dissipation during Rupture of Adhesive Bonds. Science. 1996, 271, 482–484. DOI: 10.1126/science.271.5248.482.
  • Dalbe, M.-J.; Santucci, S.; Vanel, L.; Cortet, -P.-P. Peeling-Angle Dependence of the Stick-Slip Instability during Adhesive Tape Peeling. Soft Matter. 2014, 10, 9637–9643. DOI: 10.1039/c4sm01840k.
  • Dalbe, M.-J.; Santucci, S.; Cortet, -P.-P.; Vanel, L. Strong Dynamical Effects during Stick-Slip Adhesive Peeling. Soft Matter. 2014, 10, 132–138. DOI: 10.1039/c3sm51918j.
  • Cortet, -P.-P.; Dalbe, M.-J.; Guerra, C.; Cohen, C.; Ciccotti, M.; Santucci, S.; Vanel, L. Intermittent Stick-Slip Dynamics during the Peeling of an Adhesive Tape from a Roller. Phys. Rev. E. 2013, 87, 022601. DOI: 10.1103/PhysRevE.87.022601.
  • Racich, J. L.; Koutsky, J. A. Slip-Stick Peel Failure of a Semicrystalline Adhesive. J. Appl. Polym. Sci. 1975, 19, 1479–1482. DOI: 10.1002/app.1975.070190528.
  • Simon, H.-J.; Budzik, M. K. Effects of Bondline Discontinuity during Growth of Interface Cracks Including Stability and Kinetic Considerations. J. Mech. Phys. Solids. 2018, 117, 1–21. DOI: 10.1016/j.jmps.2018.04.002.
  • Taleb Ali, M.; Julien, J.; Shanahan, M. E. R. Effect of Adhesion Defects on Crack Propagation in Double Cantilever Beam Test. Int. J. Adhes. Adhes. 2018, 84, 420–430. DOI: 10.1016/j.ijadhadh.2018.05.008.
  • Hsueh, C.-J.; Avellar, L.; Bourdin, B.; Ravichandran, G.; Bhattacharya, K. Stress Fluctuation, Crack Renucleation and Toughening in Layered Materials. J. Mech. Phys. Solids. 2018, 120, 68–78. DOI: 10.1016/j.jmps.2018.04.011.
  • Chu, T. C.; Ranson, W. F.; Sutton, M. A.; Peters, W. H. Applications of Digital-Image-Correlation Techniques to Experimental Mechanics. Exp. Mech. 1985, 25(3), 232–244. DOI: 10.1007/BF02325092.
  • Sekiguchi, Y.; Hayashi, A.; Sato, C. Analytical Determination of Adhesive Layer Deformation for Adhesively Bonded Double Cantilever Beam Test considering Elastic–Plastic Deformation. J. Adhes. 2018, in press. DOI: 10.1080/00218464.2018.1489799.
  • Ravi-Chandar, K.; Knauss, W. G. An Experimental Investigation into Dynamic Fracture: I. Crack Initiation and Arrest. Int. J. Fract. 1984, 25, 247–262. DOI: 10.1007/BF00963460.
  • Ravi-Chandar, K.; Knauss, W. G. An Experimental Investigation into Dynamic Fracture: III. On Steady-State Crack Propagation and Crack Branching. Int. J. Fract. 1984, 26, 141–154. DOI: 10.1007/BF01157550.
  • Kinloch, A. J.; Young, R. J. Impact and Fatigue. In Fracture Behaviour of Polymers; Springer: Dordrecht, 2013; 182–225. DOI:10.1007/978-94-017-1594-2_6.
  • Zamanian, M.; Mortezaei, M.; Salehnia, B.; Jam, J. E. Fracture Toughness of Epoxy Polymer Modified with Nanosilica Particles: Particle Size Effect. Eng. Fract. Mech. 2013, 97, 193–206. DOI: 10.1016/j.engfracmech.2012.10.027.
  • Kinloch, A. J.; Lee, J. H.; Taylor, A. C.; Sprenger, S.; Eger, C.; Egan, D. Toughening Structural Adhesives via Nano- and Micro-Phase Inclusions. J. Adhes. 2003, 79(8–9), 867–873. DOI: 10.1080/00218460309551.
  • Gaul, H.; Weber, G. Technology of Weld-Adhesive Joints. In Hybrid Adhesive Joints; Da Silva, L. F. M., Pirondi, A., Öchsner, A., Eds.; Springer: Heidelberg, 2011; Vol. 6. 37–78. DOI:10.1007/8611_2010_47.
  • Jin, H.; Miller, G. M.; Sottos, N. R.; White, S. R. Fracture and Fatigue Response of a Self-Healing Epoxy Adhesive. Polymer. 2011, 52, 1628–1634. DOI: 10.1016/j.polymer.2011.02.011.
  • Shet, C.; Chandra, N. Analysis of Energy Balance When Using Cohesive Zone Models to Simulate Fracture Processes. J. Eng. Mater. Technol. 2002, 124(4), 440–450. DOI: 10.1115/1.1494093.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.