276
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Accelerated curing of glued-in threaded rods by means of inductive heating – Part I: experiments

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 225-250 | Received 22 Jul 2019, Accepted 08 Aug 2019, Published online: 18 Aug 2019

References

  • Regert, M.;. Investigating the history of prehistoric glues by gas chromatography-mass spectrometry. J. Sep. Sci. 2004, 27(3), 244–254. DOI: 10.1002/jssc.200301608.
  • Cnuts, D.; Tomasso, S.; Rots, V. The Role of Fire in the Life of an Adhesive. J. Archaeol. Method Theory. 2018, 25(3), 839–862. DOI: 10.1007/s10816-017-9361-z.
  • Kozowyk, P. R. B.; Soressi, M.; Pomstra, D.; Langejans, G. H. J. Experimental Methods for the Palaeolithic Dry Distillation of Birch Bark: Implications for the Origin and Development of Neandertal Adhesive Technology. Sci. Rep. 2017, 7(1). DOI: 10.1038/s41598-017-08106-7.
  • Rageot, M.; Théry-Parisot, I.; Beyries, S.; Lepère, C.; Carré, A.; Mazuy, A.; Filippi, -J.-J.; Fernandez, X.; Binder, D.; Regert, M. Birch Bark Tar Production: Experimental and Biomolecular Approaches to the Study of a Common and Widely Used Prehistoric Adhesive. J. Archaeol. Method Theory 2018, 2(281), 69. DOI: 10.1007/s10816-018-9372-4.
  • Unger, A.; Schniewind, A. P.; Unger, W. In Conservation of Wood Artifacts. A Handbook; Unger, A., Schniewind, A. P., Unger, W., Eds.; Adhesives and Gap Fillers. Springer: Berlin, Heidelberg, 2001; p 541–560.
  • Woodard, A. C.; Milner, H. R. Sustainability of timber and wood in construction. In Sustainability of Construction Materials; Khatib, J. M., Ed.; Elsevier: Amsterdam, Boston, Cambridge, heidelberg, London, 2016; p 129–157.
  • Ramage, M. H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D. U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The Wood from the Trees: the Use of Timber in Construction. Renewable Sustainable Energy Rev. 2017, 68, 333–359. DOI: 10.1016/j.rser.2016.09.107.
  • Milner, H. R.; Woodard, A. C. Sustainability of engineered wood products. In Sustainability of Construction Materials; Khatib, J. M., Ed.; Elsevier: Amsterdam, Boston, Cambridge, heidelberg, London, 2016; p 159–180.
  • Tannert, T.; Vallée, T.; Hehl, S. Experimental and Numerical Investigations on Adhesively Bonded Hardwood Joints. Int. J. Adhes. Adhes. 2012, 37, 65–69. DOI: 10.1016/j.ijadhadh.2012.01.014.
  • Vallée, T.; Tannert, T.; Hehl, S. Experimental and numerical investigations on full-scale adhesively bonded timber trusses. Mater. Struct./Materiaux Constructions 2011, 44(10), 1745–1758. DOI: 10.1617/s11527-011-9735-8.
  • Miotto, J. L.; Dias, A. A. Evaluation of Perforated Steel Plates as Connection in Glulam–concrete Composite Structures. Constr. Build. Mater. 2012, 28(1), 216–223. DOI: 10.1016/j.conbuildmat.2011.08.045.
  • Tlustochowicz, G.; Serrano, E.; Steiger, R. State-of-the-art Review on Timber Connections with Glued-in Steel Rods. Mater. Struct. 2011, 44(5), 997–1020. DOI: 10.1617/s11527-010-9682-9.
  • Gonzalez, E.; Avez, C.; Tannert, T. Timber Joints with Multiple Glued-in Steel Rods. J. Adhes. 2015, 92(7–9), 635–651. DOI: 10.1080/00218464.2015.1099098.
  • Serrano, E.;. Glued-in Rods for Timber Structures – A 3D Model and Finite Element Parameter Studies. Int. J. Adhes. Adhes. 2001, 21(2), 115–127. DOI: 10.1016/S0143-7496(00)00043-9.
  • Steiger, R.; Serrano, E.; Stepinac, M.; Rajčić, V.; O’Neill, C.; McPolin, D.; Widmann, R. Strengthening of Timber Structures with Glued-in Rods. Constr. Build. Mater. 2015, 97, 90–105. DOI: 10.1016/j.conbuildmat.2015.03.097.
  • Grunwald, C.; Vallée, T.; Fecht, S.; Bletz-Mühldorfer, O.; Diehl, F.; Bathon, L.; Myslicki, S.; Scholz, R.; Walther, F. Rods glued in engineered hardwood products part I: Experimental results under quasi-static loading. Int. J. Adhes. Adhes. 2018. DOI: 10.1016/j.ijadhadh.2018.05.003.
  • Lartigau, J.; Coureau, J.-L.; Morel, S.; Galimard, P.; Maurin, E. Effect of Temperature on the Mechanical Performance of Glued-In Rods in Timber Structures. Int. J. Adhes. Adhes. 2015, 57, 79–84. DOI: 10.1016/j.ijadhadh.2014.10.006.
  • Di Maria, V.; D’Andria, L.; Muciaccia, G.; Ianakiev, A. Influence of Elevated Temperature on Glued-in Steel Rods for Timber Elements. Constr. Build. Mater. 2017, 147, 457–465. DOI: 10.1016/j.conbuildmat.2017.04.038.
  • Madhoushi, M.; Ansell, M. P. Behaviour of Timber Connections Using Glued-in GFRP Rods under Fatigue Loading. Part I: In-line Beam to Beam Connections. Compos. B Eng. 2008, 39(2), 243–248. DOI: 10.1016/j.compositesb.2007.07.001.
  • Myslicki, S.; Bletz-Mühldorfer, O.; Diehl, F.; Lavarec, C.; Vallée, T.; Scholz, R.; Walther, F. Fatigue of glued-in rods in engineered hardwood products — Part I: experimental results. J. Adhes. 2019, 16(3), 1–27. DOI: 10.1080/00218464.2018.1555477.
  • Myslicki, S.; Walther, F.; Bletz-Mühldorfer, O.; Diehl, F.; Lavarec, C.; Beber, V. C.; Vallée, T. Fatigue of glued-in rods in engineered hardwood products — Part II: Numerical modelling. J. Adhes. 2019, 86(5), 1–21. DOI: 10.1080/00218464.2018.1555478.
  • Tannert, T.; Zhu, H.; Myslicki, S.; Walther, F.; Vallée, T. Tensile and fatigue investigations of timber joints with glued-in FRP rods. J. Adhes. 2016, 16(3), 1–17. DOI: 10.1080/00218464.2016.1190653.
  • Verdet, M.; Coureau, J.-L.; Cointe, A.; Salenikovich, A.; Galimard, P.; Delisée, C.; Munoz Toro, W. Creep Performance of Glued-In Rod Joints in Controlled and Variable Climate Conditions. Int. J. Adhes. Adhes. 2017, 75, 47–56. DOI: 10.1016/j.ijadhadh.2017.02.012.
  • Otero-Chans, D.; Estévez-Cimadevila, J.; Martín-Gutiérrez, E. Joints with Bars Glued-in Softwood Laminated Timber Subjected to Climatic Cycles. Int. J. Adhes. Adhes. 2018, 82, 27–35. DOI: 10.1016/j.ijadhadh.2017.12.010.
  • Gonzales, E.; Tannert, T.; Vallee, T. The Impact of Defects on the Capacity of Timber Joints with Glued-in Rods. Int. J. Adhes. Adhes. 2016, 65, 33–40. DOI: 10.1016/j.ijadhadh.2015.11.002.
  • Kohl, D.; Ratsch, N.; Böhm, S.; Voß, M.; Kaufmann, M.; Vallée, T. Influence of Manufacturing Methods and Imperfections on the Load Capacity of Glued-in Rods. J. Adhes. 2018, 44(385), 1–22. DOI: 10.1080/00218464.2018.1508351.
  • Ratsch, N.; Böhm, S.; Voß, M.; Kaufmann, M.; Vallée, T. Influence of Imperfections on the Load Capacity and Stiffness of Glued-in Rod Connections. Constr. Build. Mater. 2019, 226, 200–211. DOI: 10.1016/j.conbuildmat.2019.07.278.
  • Schober, K.-U.; Tannert, T. Hybrid Connections for Timber Structures. Eur. J. Wood Prod. 2016, 74(3), 369–377. DOI: 10.1007/s00107-016-1024-3.
  • Chans, D. O.; Cimadevila, J. E.; Gutiérrez, E. M. Withdrawal strength of threaded steel rods glued with epoxy in wood. Int. J. Adhes. Adhes. 2013, 44, 115–212.
  • Ling, Z.; Yang, H.; Liu, W.; Lu, W.; Zhou, D.; Wang, L. Pull-out Strength and Bond Behaviour of Axially Loaded Rebar Glued-in Glulam. Constr. Build. Mater. 2014, 65, 440–449. DOI: 10.1016/j.conbuildmat.2014.05.008.
  • Madhoushi, M.; Ansell, M. P. Experimental study of static and fatigue strengths of pultruded GFRP rods bonded into LVL and glulam. Int. J. Adhes. Adhes. 2004, 24(4), 319–325. DOI: 10.1016/j.ijadhadh.2003.07.004.
  • Grunwald, C.; Kaufmann, M.; Alter, B.; Vallée, T.; Tannert, T. Numerical Investigations and Capacity Prediction of G-FRP Rods Glued into Timber. Compos. Struct. 2018, 202, 47–59. DOI: 10.1016/j.compstruct.2017.10.010.
  • Raftery, G. M.; Whelan, C. Low-grade Glued Laminated Timber Beams Reinforced Using Improved Arrangements of Bonded-in GFRP Rods. Constr. Build. Mater. 2014, 52, 209–220. DOI: 10.1016/j.conbuildmat.2013.11.044.
  • Kaufmann, M.; Kolbe, J.; Vallée, T. Hardwood Rods Glued into Softwood Using Environmentally Sustainable Adhesives. J. Adhes. 2018, 94(11), 991–1016. DOI: 10.1080/00218464.2017.1385459.
  • Rossignon, A.; Espion, B. Experimental assessment of the pull-ou strength of single rods bonded in glulam parallel to the grain. Holz als Roh- und Werkstoff. 2008, 66, 419–432.
  • Myslicki, S.; Vallée, T.; Bletz-Mühldorfer, O.; Diehl, F.; Lavarec, L. C.; Créac’Hcadec, R. Fracture mechanics based joint capacity prediction of glued-in rods with beech laminated veneer lumber. J. Adhes. 2018, 16(3), 1–20. DOI: 10.1080/00218464.2018.1538879.
  • Broughton, J. G.; Hutchinson, A. R. Effect of Timber Moisture Content on Bonded-in Rods. Constr. Build. Mater. 2001, 15(1), 17–25. DOI: 10.1016/S0950-0618(00)00066-0.
  • Otero Chans, D.; Cimadevila, J. E.; Gutiérrez, E. M. Glued Joints in Hardwood Timber. Int. J. Adhes. Adhes. 2008, 28(8), 457–463. DOI: 10.1016/j.ijadhadh.2008.04.008.
  • Stepinac, M.; Rajčić, V.; Hunger, F.; van de Kuilen, J. W. G. Glued-In Rods in Beech Laminated Veneer Lumber. Eur. J. Wood Wood Prod. 2016, 74(3), 463–466. DOI: 10.1007/s00107-016-1037-y.
  • Moussa, O.; Vassilopoulos, A. P.; de Castro, J.; Keller, T. Time–temperature Dependence of Thermomechanical Recovery of Cold-curing Structural Adhesives. Int. J. Adhes. Adhes. 2012, 35, 94–101. DOI: 10.1016/j.ijadhadh.2012.02.005.
  • Vallée, T.; Tannert, T.; Fecht, S. Adhesively Bonded Connections in the Context of Timber Engineering – A Review. J. Adhes. 2016, 93(4), 257–287. DOI: 10.1080/00218464.2015.1071255.
  • Adam, M.; Lühring, A.; Popp, M.; Fecht, S.; Vallée, T. Pre-applicable Structural Adhesives for Timber Engineering: Glued-in G-FRP Rods. Int. J. Adhes. Adhes. 2016, 67, 121–127. DOI: 10.1016/j.ijadhadh.2015.12.034.
  • Yousefi, A.; Lafleur, P. G.; Gauvin, R. Kinetic Studies of Thermoset Cure Reactions: A Review. Polym. Compos. 1997, 18(2), 157–168. DOI: 10.1002/pc.10270.
  • Goss, B.;. Bonding glass and other substrates with UV curing adhesives. Int. J. Adhes. Adhes. 2002, 405–408. DOI: 10.1016/S0143-7496(02)00022-2.
  • Zhou, H. M.;. A study of microwave reaction rate enhancement effect in adhesive bonding of polymers and composites. Compos. Struct. 2003, 61, 303–309. DOI: 10.1016/S0263-8223(03)00061-8.
  • Thalacker, V.;. Radiation processing of coatings and adhesives - an overview. Int. J. Rad. Appl. Instrum. 1990, 18–29. DOI: 10.1016/1359-0197(90)90051-I.
  • Broughton, J. G.; Hutchinson, A. R. Adhesive Systems for Structural Connections in Timber. Int. J. Adhes. Adhes. 2001, 21(3), 177–186. DOI: 10.1016/S0143-7496(00)00049-X.
  • Davis, G.;. The Performance of Adhesive Systems for Structural Timbers. Int. J. Adhes. Adhes. 1997, 17(3), 247–255. DOI: 10.1016/S0143-7496(97)00010-9.
  • Stein, B. A.; Hodges, W. T.; Tyeryar, J. R. Rapid Adhesive Bonding of Thermoplastic Composites and Titanium Withthermoplastic Adhesives. J. Aircr. 1986, 23(7), 545–546. DOI: 10.2514/3.45341.
  • Rider, A. N.; Wang, C. H.; Cao, J. Internal Resistance Heating for Homogeneous Curing of Adhesively Bonded Repairs. Int. J. Adhes. Adhes. 2011, 31(3), 168–176. DOI: 10.1016/j.ijadhadh.2011.01.001.
  • Kohl, D.; Vallée, T.; Vorholt, F.; Böhm, S. Manufacturing gluing-in-rods under low temperatures and with shorter process times using induction and resistive heating. Welding World 2017, 61(3), 575–580. DOI: 10.1007/s40194-017-0432-2.
  • Laidler, K.;. The development of the Arrhenius equation. J. Chem. Educ. 1984, 61, 494–8.
  • Rudnev, V.; Loveless, D.; Cook, R. L. Handbook of Induction Heating, Second ed.; CRC Press Taylor & Francis Group: Boca Raton, London, New York, 2017.
  • Lucia, O.; Maussion, P.; Dede, E. J.; Burdio, J. M. Induction Heating Technology and Its Applications: past Developments, Current Technology, and Future Challenges. IEEE Trans. Ind. Electron. 2014, 61(5), 2509–2520. DOI: 10.1109/TIE.2013.2281162.
  • Carbas, R. J. C.; Da Silva, L. F. M.; Critchlow, G. W. Adhesively Bonded Functionally Graded Joints by Induction Heating. Int. J. Adhes. Adhes. 2014, 48, 110–118. DOI: 10.1016/j.ijadhadh.2013.09.045.
  • Carbas, R. J. C.; Da Silva, L. F. M.; Critchlow, G. W. Effect of Post-cure on Adhesively Bonded Functionally Graded Joints by Induction Heating. Proc. Inst. Mech. Eng. Part L. 2015, 229(5), 419–430. DOI: 10.1177/1464420714523579.
  • Vallée, T.; Adam, M. Inductively Cured Glued-In Rods in Timber Using Curie Particles. Int. J. Adhes. Adhes. 2016, 70, 37–45. DOI: 10.1016/j.ijadhadh.2016.05.005.
  • Bainbridge, R.; Mettem, C.; Harvey, K.; Ansell, M. Bonded-in Rod Connections for Timber Structures—development of Design Methods and Test Observations. Int. J. Adhes. Adhes. 2002, 22(1), 47–59. DOI: 10.1016/S0143-7496(01)00036-7.
  • Gelman, A.;. Analysis of Variance? Why It Is More Important than Ever. Ann. Stat. 2005, 33(1), 1–53. DOI: 10.1214/009053604000001048.
  • Grunwald, C.; Vallée, T.; Fecht, S.; Bletz-Mühldorfer, O.; Diehl, F.; Bathon, L.; Walther, F.; Scholz, R.; Myslicki, S. Rods glued in engineered hardwood products part II: Numerical modelling and capacity. Int. J. Adhes. Adhes. 2018. DOI: 10.1016/j.ijadhadh.2018.05.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.