180
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Accelerated curing of glued-in threaded rods by means of inductive heating – part II: modelling

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 251-281 | Received 08 Aug 2019, Accepted 08 Aug 2019, Published online: 18 Aug 2019

References

  • Corezzi, S.; Fioretto, D.; Santucci, G.; Kenny, J. M. Modeling Diffusion-control in the Cure Kinetics of Epoxy-amine Thermoset Resins: an Approach Based on Configurational Entropy. Polymer. 2010, 51(24), 5833–5845. DOI: 10.1016/j.polymer.2010.09.073.
  • Hale, A.;. Thermosets. In Handbook of Thermal Analysis and Calorimetry. Applications to Polymers and Plastics; Cheng, S. Z. D., Ed.; Elsevier Science: Oxford, 2002; Vol. 3, pp 295–354.
  • Wisanrakkit, G.; Gillham, J. K. The Glass Transition Temperature (tg) as an Index of Chemical Conversion for a high-Tg Amine/epoxy System: Chemical and Diffusion-controlled Reaction Kinetics. J. Appl. Polym. Sci. 1990, 41(1112), 2885–2929. DOI: 10.1002/app.1990.070411129.
  • Corezzi, S.; Fioretto, D.; Sciortino, F. Chemical and Physical Aggregation of Small-functionality Particles. Soft Matter. 2012, 8(44), 11207. DOI: 10.1039/c2sm26112j.
  • Mereu, I.; Liotta, A.; Comez, L.; Corezzi, S. On the Interplay between the Slowdown of Dynamics and the Kinetics of Aggregation: the Case Study of a Reactive Binary Mixture. J. Chem. Phys. 2015, 142(15), 154905. DOI: 10.1063/1.4918743.
  • Um, M.-K.; Lee, S.-K.; Hwang, B.-S. New Model for Characterising Resin Cure by Dynamic Differential Scanning Calorimetry. Plast., Rubber Compos. 2002, 31(5), 196–200. DOI: 10.1179/146580102225005036.
  • Laidler, K.;. The Development of the Arrhenius Equation. J. Chem. Educ. 1984, 61, 494–498. DOI: 10.1021/ed061p494.
  • Šesták, J.; Berggren, G. Study of the Kinetics of the Mechanism of Solid-state Reactions at Increasing Temperatures. Thermochim. Acta. 1971, 3(1), 1–12. DOI: 10.1016/0040-6031(71)85051-7.
  • Yousefi, A.; Lafleur, P. G.; Gauvin, R. Kinetic Studies of Thermoset Cure Reactions: A Review. Polym. Compos. 1997, 18(2), 157–168. DOI: 10.1002/pc.10270.
  • Kamal, M. R.;. Thermoset Characterization for Moldability Analysis. Polym. Eng. Sci. 1974, 14(3), 231–239. DOI: 10.1002/pen.760140312.
  • Thomas, R.; Durix, S.; Sinturel, C.; Omonov, T.; Goossens, S.; Groeninckx, G.; Moldenaers, P.; Thomas, S. Cure Kinetics, Morphology and Miscibility of Modified DGEBA-based Epoxy Resin – Effects of a Liquid Rubber Inclusion. Polymer. 2007, 48(6), 1695–1710. DOI: 10.1016/j.polymer.2007.01.018.
  • González-Romero, V. M.; Casillas, N. Isothermal and Temperature Programmed Kinetic Studies of Thermosets. Polym. Eng. Sci. 1989, 29(5), 295–301. DOI: 10.1002/pen.760290506.
  • Flory, P. J.;. Principles of Polymer Chemistry; Cornell Univ. Press: Ithaca, London, 1986.
  • Stevenson, J. K.;. Free Radical Polymerization Models for Simulating Reactive Processing. Polym. Eng. Sci. 1986, 26(11), 746–759. DOI: 10.1002/pen.760261106.
  • Sourour, S.; Kamal, M. R. Differential Scanning Calorimetry of Epoxy Cure: Isothermal Cure Kinetics. Thermochim. Acta. 1976, 14(1–2), 41–59. DOI: 10.1016/0040-6031(76)80056-1.
  • Han, C. D.; Lee, D.-S. Analysis of the Curing Behavior of Unsaturated Polyester Resins Using the Approach of Free Radical Polymerization. J. Appl. Polym. Sci. 1987, 33(8), 2859–2876. DOI: 10.1002/app.1987.070330820.
  • Han, C. D.; Lee, D.-S. Curing Behavior of Unsaturated Polyester Resin with Mixed Initiators. J. Appl. Polym. Sci. 1987, 34(2), 793–813. DOI: 10.1002/app.1987.070340230.
  • Lee, D.-S.; Han, C. D. The Effect of Resin Chemistry on the Curing Behavior and Chemorheology of Unsaturated Polyester Resins. J. Appl. Polym. Sci. 1987, 34(3), 1235–1258. DOI: 10.1002/app.1987.070340330.
  • Ng, H.; Manas-zloczower, I. A Nonisothermal Differential Scanning Calorimetry Study of the Curing Kinetics of an Unsaturated Polyester System. Polym. Eng. Sci. 1989, 29(16), 1097–1102. DOI: 10.1002/pen.760291604.
  • Batch, G. L.; Macosko, C. W. Kinetic Model for Crosslinking Free Radical Polymerization Including Diffusion Limitations. J. Appl. Polym. Sci. 1992, 44(10), 1711–1729. DOI: 10.1002/app.1992.070441004.
  • Sickfeld, J.; Mielke, W. Application of Thermal Analysis for the Investigation of Epoxy Resins. Prog. Org. Coat. 1984, 12(1), 27–116. DOI: 10.1016/0033-0655(84)80003-5.
  • Duswalt, A. A.;. The Practice of Obtaining Kinetic Data by Differential Scanning Calorimetry. Thermochim. Acta. 1974, 8(1–2), 57–68. DOI: 10.1016/0040-6031(74)85072-0.
  • Fava, G.; Carvelli, V.; Poggi, C. Pull-out Strength of Glued-In FRP Plates Bonded in Glulam. Constr. Build. Mater. 2013, 43, 362–371. DOI: 10.1016/j.conbuildmat.2013.02.035.
  • Rabearison, N.; Jochum, C.; Grandidier, J. C. A Cure Kinetics, Diffusion Controlled and Temperature Dependent, Identification of the Araldite LY556 Epoxy. J. Mater. Sci. 2011, 46(3), 787–796. DOI: 10.1007/s10853-010-4815-7.
  • Leroy, E.; Dupuy, J.; Maazouz, A. A Method of Estimating Kinetic Parameters of Thermoset Cures: Application to A Dicyanate Ester Resin. Macromol. Chem. Phys. 2001, 202(4), 465–474. DOI: 10.1002/1521-3935(20010201)202:4<465::AID-MACP465>3.0.CO;2-Z.
  • Nez, L.; Taboada, J.; Fraga, F.; Nez, M. R. Kinetic Study and Time-temperature-transformation Cure Diagram Foran Epoxy-diamine System. J. Appl. Polym. Sci. 66(7), 1377–1388 (1997). doi:10.1002/(SICI)1097-4628(19971114)66:7<1377:AID-APP16>3.0.CO;2-#.
  • Lapique, F.; Redford, K. Curing Effects on Viscosity and Mechanical Properties of a Commercial Epoxy Resin Adhesive. Int. J. Adhes. Adhes. 2002, 22(4), 337–346. DOI: 10.1016/S0143-7496(02)00013-1.
  • Lee, W. I.; Loos, A. C.; Springer, G. S. Heat of Reaction, Degree of Cure, and Viscosity of Hercules 3501-6 Resin. J. Compos. Mater. 1982, 16(6), 510–520. DOI: 10.1177/002199838201600605.
  • Seifi, R.; Hojjati, M. Heat of Reaction, Cure Kinetics, and Viscosity of Araldite LY-556 Resin. J. Compos. Mater. 2005, 39(11), 1027–1039. DOI: 10.1177/0021998305048738.
  • Thiagarajan, R.; Reddy, P. V.; Sridhar, S.; Ratra, M. C. Determination of Cure Schedules of Epoxies by Differential Scanning Calorimetry. J. Therm. Anal. 1990, 36(1), 277–287. DOI: 10.1007/BF01912089.
  • Kissinger, H. E.;. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29(11), 1702–1706. DOI: 10.1021/ac60131a045.
  • Blaine, R. L.; Kissinger, H. E. Homer Kissinger and the Kissinger Equation. Thermochim. Acta. 2012, 540, 1–6. DOI: 10.1016/j.tca.2012.04.008.
  • Stepinac, M.; Hunger, F.; Tomasi, R.; Serrano, E.; Rajcic, V.; van de Kuilen, J. W., Comparison of Design Rules for Glued-In Rods and Design Rule Proposal for Implementation in European Standards. Working Commission W18 - Timber Structures. CIB-W18/46-7-10 (Timber Scientific Publishing, Karlsruhe, 2013).
  • Volkersen, O. Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mitkonstanten Laschenquerschnitten. Luftfahrtforschung. 1938, 15, 41–47.
  • Goland M, Reissner E. The Stresses Incemented Joints. J. Appl. Mech. 1944 (11), A17–27.
  • Da Silva, L. F. M.; Das Neves, P. J. C.; Adams, R. D.; Spelt, J. K. Analytical Models of Adhesively Bonded joints—Part I: Literature Survey. Int. J. Adhes. Adhes. 2009, 29(3), 319–330. DOI: 10.1016/j.ijadhadh.2008.06.005.
  • Da Silva, L. F. M.; Das Neves, P. C.; Adams, R. D.; Wang, A.; Spelt, J. K. Analytical Models of Adhesively Bonded joints—Part II: Comparative Study. Int. J. Adhes. Adhes. 2009, 29(3), 331–341. DOI: 10.1016/j.ijadhadh.2008.06.007.
  • Jensen, J. L.; Nakatani, M.; Quenneville, P.; Walford, B. Ein einfaches und allgemeines Modell für den Ausziehwiderstand von Schrauben und eingeklebten Gewindestangen. Eur. J. Wood Prod. 2011, 69(4), 537–544. DOI: 10.1007/s00107-010-0478-y.
  • Serrano, E.;. Glued-in Rods for Timber Structures — a 3D Model and Finite Element Parameter Studies. Int. J. Adhes. Adhes. 2001, 21(2), 115–127. DOI: 10.1016/S0143-7496(00)00043-9.
  • Xu, B. H.; Bouchaïr, A.; Racher, P. Analytical Study and Finite Element Modelling of Timber Connections with Glued-In Rods in Bending. Constr. Build. Mater. 2012, 34, 337–345. DOI: 10.1016/j.conbuildmat.2012.02.087.
  • Grunwald, C.; Vallée, T.; Fecht, S.; Bletz-Mühldorfer, O.; Diehl, F.; Bathon, L.; Walther, F.; Scholz, R.; Myslicki, S. Rods Glued in Engineered Hardwood Products Part II: Numericalmodelling and Capacity Prediction. Int. J. Adhes. Adhes. 2018. DOI: 10.1016/j.ijadhadh.2018.05.004.
  • Myslicki, S.; Vallée, T.; Bletz-Mühldorfer, O.; Diehl, F.; Lavarec, L. C.; Créac’Hcadec, R. Fracture Mechanics Based Joint Capacity Prediction of Glued-in Rodswith Beech Laminated Veneer Lumber. J. Adhes. 16(3), 1–20 (2018). doi:10.1080/00218464.2018.1538879
  • Gardelle, V.; Morlier, P. Geometric Parameters Which Affect the Short Term Resistance of an Axially Loaded Glued-in Rod. Mater. Struct. 2007, 40(1), 127–138. DOI: 10.1617/s11527-006-9155-3.
  • Lartigau, J.; Coureau, J. L.; Morel, S.; Galimard, P.; Maurin, E.; Title, A. Mixed Mode Fracture of Glued-In Rods in Timber Structures. Int. J. Fract. 2015, 192(1), 71–86. DOI: 10.1007/s10704-014-9986-9.
  • Kaufmann M.; Kolbe J.; Vallée T. Hardwood Rods Glued into Softwood Using Environmentally Sustainable Adhesives. J. Adhes. 2018, 94(11), 991–1016.
  • Grunwald, C.; Kaufmann, M.; Alter, B.; Vallée, T.; Tannert, T.; Title, A. Numerical Investigations and Capacity Prediction of G-FRP Rods Glued into Timber. Compos. Struct. 2018, 202, 47–59. DOI: 10.1016/j.compstruct.2017.10.010.
  • Towse, A.; Potter, K. D.; Wisnom, M. R.; Adams, R. D. The Sensitivity of a Weibull Failure Criterion to Singularity Strength and Local Geometry Variations. Int. J. Adhes. Adhes. 1999, 19(1), 71–82. DOI: 10.1016/S0143-7496(98)00058-X.
  • Weibull, E. H. W. Statistical Distribution of Wide Application. ASME J. Appl. Mech. 1951, 18, 293–297.
  • Bergman, B.;. On the Estimation of the Weibull Modulus. J. Mater. Sci. Lett. 1984, 3(8), 689–692. DOI: 10.1007/BF00719924.
  • Langlois, R.;. Estimation of Weibull Parameters. J. Mater. Sci. Lett. 1991, 10(18), 1049–1051. DOI: 10.1007/BF00720121.
  • Bazant, Z. P.;. Scaling Theory for Quasibrittle Structural Failure. Proc. Natl. Acad. Sci. U. S. A. 2004, 101(37), 13400–13407. DOI: 10.1073/pnas.0404096101.
  • Freudenthal. Statistical Approach to Brittle Fracture. Fracture an Advanced Treatise, vol. II. New York, San Francisco, London, 1968.
  • Vallée, T.; Correia, J. R.; Keller, T. Probabilistic Strength Prediction for Double Lap Joints Composed of Pultruded GFRP Profiles – Part II: Strength Prediction. Compos. Sci. Technol. 2006, 66(13), 1915–1930. DOI: 10.1016/j.compscitech.2006.04.001.
  • Tannert, T.; Lam, F.; Vallée, T. Strength Prediction for Rounded Dovetail Connections considering Size Effects. J. Eng. Mech. 2010, 136(3), 358–366. DOI: 10.1061/(ASCE)0733-9399(2010)136:3(358).
  • Tannert, T.; Vallée, T.; Hehl, S. Probabilistic Strength Prediction of Adhesively Bonded Timber Joints. Wood Sci. Technol. 2012, 46(1–3), 503–513. DOI: 10.1007/s00226-011-0424-0.
  • Albiez, M.; Vallée, T.; Ummenhofer, T. Adhesively Bonded Steel Tubes – Part II: Numerical Modelling and Strength Prediction. Int. J. Adhes. Adhes. 2018. DOI: 10.1016/j.ijadhadh.2018.02.004.
  • Norris, C. B.;. Strength of Orthotropic Materials Subjected to Combined Stresses; Forest Products Laboratory: Madison, 1962.
  • Cabrero, J. M.; Blanco, C.; Gebremedhin, K. G.; Martin-Meizoso, A. Beurteilung der phänomenologischen Versagenskriterien von Holz. J. Wood Prod. 2012, 70(6), 871–882. DOI: 10.1007/s00107-012-0638-3.
  • Kaufmann, M.; Kolbe, J.; Vallée, T. Hardwood Rods Glued into Softwood Using Environmentally Sustainable Adhesives. J. Adhes. 2018, 94(11), 991–1016. DOI: 10.1080/00218464.2017.1385459.
  • Kamal, M. R.; Sourour, S. Kinetics and Thermal Characterization of Thermoset Cure. Polym. Eng. Sci. 1973, 13(1), 59–64. DOI: 10.1002/pen.760130110.
  • Hülder, G.;, Zur Aushärtung kalthärtender Reaktionsharzsysteme für tragende Anwendungen im Bauwesen. Zugl.: Erlangen-Nürnberg, Univ., Diss., (Lehrstuhl für Kunststofftechnik, Erlangen, 2008).
  • Grunwald, C.; Vallée, T.; Fecht, S.; Bletz-Mühldorfer, O.; Diehl, F.; Bathon, L.; Myslicki, S.; Scholz, R.; Walther, F. Rods Glued in Engineered Hardwood Products Part I: Experimentalresults Under Quasi-static Loading. Int. J. Adhes. Adhes. 2018. DOI: 10.1016/j.ijadhadh.2018.05.003.
  • Soussou, J. E.; Moavenzadeh, F.; Gradowczyk, M. H. Application of Prony Series to Linear Viscoelasticity. Trans. Soc. Rheol. 1970, 14(4), 573–584. DOI: 10.1122/1.549179.
  • Vallée, T.; Keller, T.; Fourestey, G.; Fournier, B.; Correia, J. R. Adhesively Bonded Joints Composed of Pultruded Adherends: Considerations at the Upper Tail of the Material Strength Statistical Distribution. Probab. Eng. Mech. 2009, 24(3), 358–366. DOI: 10.1016/j.probengmech.2008.10.001.
  • Vallée, T.; Tannert, T.; Hehl, S. Experimental and Numerical Investigations on Full-scale Adhesivelybonded Timber Trusses. Mater. Struct./Materiaux Constructions 44(10), 1745–1758 (2011). doi:10.1617/s11527-011-9735-8
  • Fecht, S.; Vallée, T.; Tannert, T.; Fricke, H. Adhesively Bonded Hardwood Joints under Room Temperature and Elevated Temperatures. J. Adhes. 2014, 90(5–6), 401–419. DOI: 10.1080/00218464.2013.836968.
  • Kulawik, J.; Szeglowski, Z.; Czapla, T.; Kulawik, J. P. Determination of Glass Transition Temperature, Thermal Expansion And, Shrinkage of Epoxy Resins. Colloid. Polymer Sci. 1989, 267(11), 970–975. DOI: 10.1007/BF01410157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.