159
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Abnormally large and small adhesion forces between plasma-treated silicon surfaces studied on AFM

, &
Pages 305-327 | Received 21 Jul 2019, Accepted 02 Sep 2019, Published online: 23 Sep 2019

References

  • Zhao, Y. P.; Wang, L. S.; Yu, T. X. Mechanics of Adhesion in MEMS - a Review. J. Adhes. Sci. Technol. 2003, 17, 519–546. DOI: 10.1163/15685610360554393.
  • Zaghloul, U.; Papaioannou, G.; Bhushan, B.; Coccetti, F.; Pons, P.; Plana, R. On the Reliability of Electrostatic NEMS/MEMS Devices: Review of Present Knowledge on the Dielectric Charging and Stiction Failure Mechanisms and Novel Characterization Methodologies. Microelectron. Reliab. 2011, 51, 1810–1818. DOI: 10.1016/j.microrel.2011.07.081.
  • Spengen, W. M. V.; Puers, R.; Wolf, I. D. The Prediction of Stiction Failures in MEMS. IEEE Trans. Device Mater. Rel. 2003, 3, 167–172. DOI: 10.1109/TDMR.2003.820295.
  • Guo, J. G.; Zhou, L. J.; Zhao, Y. P. Instability Analysis of Torsional MEMS/NEMS Actuators under Capillary Force. J. Colloid Interface Sci. 2009, 331, 458–462. DOI: 10.1016/j.jcis.2008.11.069.
  • De Wolf, I.; van Spengen, W. M. Techniques to Study the Reliability of Metal RF MEMS Capacitive Switches. Microelectron. Reliab. 2002, 42, 1789–1794. DOI: 10.1016/S0026-2714(02)00232-9.
  • Johnson, K. L.; Kendall, K.; Roberts, A. D. Surface Energy and the Contact of Elastic Solids. Proc. R. Soc. Lond. A. 1971, 324, 301–313. DOI: 10.1098/rspa.1971.0141.
  • Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of Contact Deformations on the Adhesion of Particles. J. Colloid Interface Sci. 1975, 53, 314–325. DOI: 10.1016/0021-9797(75)90018-1.
  • Maugis, D.;. Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model. J. Colloid Interface Sci. 1992, 150, 243–269. DOI: 10.1016/0021-9797(92)90285-T.
  • Butt, H. J.; Cappella, B.; Kappl, M. Force Measurements with the Atomic Force Microscope: Technique, Interpretation and Applications. Surf. Sci. Rep. 2005, 59, 1–152. DOI: 10.1016/j.surfrep.2005.08.003.
  • Leite, F. L.; Bueno, C. C.; Da Roz, A. L.; Ziemath, E. C.; Oliveira, O. N., Jr. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy. Int. J. Mol. Sci. 2012, 13, 12773–12856. DOI: 10.3390/ijms131012773.
  • Lai, T.; Huang, P. Study on Microscale Adhesion between Solid Surfaces with Scanning Probe. Sci. China. Tech. Sci. 2013, 56, 2934–2952. DOI: 10.1007/s11431-013-5404-1.
  • Ducker, W. A.; Senden, T. J.; Pashley, R. M. Direct Measurement of Colloidal Forces Using an Atomic Force Microscope. Nature. 1991, 353, 239–241. DOI: 10.1038/353239a0.
  • Varenberg, M.; Peressadko, A.; Gorb, S.; Arzt, E. Effect of Real Contact Geometry on Adhesion. Appl. Phys. Lett. 2006, 89, 121905. DOI: 10.1063/1.2356099.
  • Lai, T.; Meng, Y.; Huang, P. Adhesion Forces between a Parabolic-Shaped AFM Tip Scanning a Grooved Gold Surface: Comparison of a Model and an Experiment. Int. J. Adhes. Adhes. 2018, 86, 73–83. DOI: 10.1016/j.ijadhadh.2018.09.002.
  • You, S.; Wan, M. P. Mathematical Models for the Van Der Waals Force and Capillary Force between a Rough Particle and Surface. Langmuir. 2013, 29, 9104–9117. DOI: 10.1021/la401516m.
  • Harrison, A. J.; Corti, D. S.; Beaudoin, S. P. Capillary Forces in Nanoparticle Adhesion: A Review of AFM Methods. Part. Sci. Technol. 2015, 33, 526–538. DOI: 10.1080/02726351.2015.1045641.
  • Lai, T.; Chen, R.; Huang, P. Temperature Dependence of Microscale Adhesion Force between Solid Surfaces Using an AFM. J. Adhes. Sci. Technol. 2015, 29, 133–148. DOI: 10.1080/01694243.2014.977698.
  • Lai, T.; Shi, K.; Huang, P. Adhesion Force Behaviors between Two Silica Surfaces with Varied Water Thin Film Due to Substrate Temperature Studied by AFM. J. Adhes. Sep 27, 2018. [Online early access]. DOI: 10.1080/00218464.2018.1523725. Published Online:.
  • Lai, T.; Shi, K.; Huang, P. Effect of Water Thin Film on the Adhesion Force between Two Silica Surfaces Using AFM. J. Adhes. Oct 01, 2018. [Online early access]. DOI: 10.1080/00218464.2018.1501560. Published Online.
  • Ferreira, O. D. S.; Gelinck, E.; de Graaf, D.; Fischer, H. Adhesion Experiments Using an AFM-Parameters of Influence. Appl. Surf. Sci. 2010, 257, 48–55. DOI: 10.1016/j.apsusc.2010.06.031.
  • Lai, T.; Meng, Y. Logarithmic Contact Time Dependence of aAdhesion Force and Its Dominant Role among the Effects of AFM Experimental Parameters under Low Humidity. Appl. Surf. Sci. 2017, 419, 294–304. DOI: 10.1016/j.apsusc.2017.04.220.
  • Lai, T.; Meng, Y.; Tang, H.; Yu, G. Influence of Lateral Velocity on Adhesion Force of Surfaces with Different Hydrophilicity Revealed by an AFM Colloidal Probe at Humid Environments. J. Adhes. 2018, 94, 1036–1050. DOI: 10.1080/00218464.2017.1337569.
  • Wei, Z.; Sun, Y.; Ding, W.; Wang, Z. The Formation of Liquid Bridge in Different Operating Modes of AFM. Sci. China Phys. Mech. 2016, 59, 1–9. DOI: 10.1007/s11433-016-0241-7.
  • Wei, Z.; Zhao, Y. P. Growth of Liquid Bridge in AFM. J. Phys. D Appl. Phys. 2007, 40, 4368–4375. DOI: 10.1088/0022-3727/40/14/036.
  • Rabinovich, Y. I.; Singh, A.; Hahn, M.; Brown, S.; Moudgil, B. Kinetics of Liquid Annulus Formation and Capillary Forces. Langmuir. 2011, 27, 13514–13523. DOI: 10.1021/la202191c.
  • Sirghi, L.;. Transport Mechanisms in Capillary Condensation of Water at a Single-Asperity Nanoscopic Contact. Langmuir. 2012, 28, 2558–2566. DOI: 10.1021/la202917d.
  • Lai, T.; Li, P. Direct Evidence of a Radius of Collection Area for Thin Film Flow in Liquid Bridge Formation by Repeated Contacts Using AFM. Langmuir. 2019, 35, 6585–6593. DOI: 10.1021/acs.langmuir.9b00827.
  • Lai, T.; Meng, Y. Time-Dependent Dynamic Behaviors of a Confined Liquid to Achieve Tailored Adhesion Force with Repeated Contacts Revealed by Atomic Force Microscopy. Langmuir. 2018, 34, 15211–15227. DOI: 10.1021/acs.langmuir.8b03164.
  • Himpsel, F. J.; McFeely, F. R.; Talebibrahimi, A.; Yarmoff, J. A.; Hollinger, G. Microscopic Structure of the SiO2/Si Interface. Phys. Rev. B. 1988, 38, 6084–6096. DOI: 10.1103/PhysRevB.38.6084.
  • Gusev, E. P.; Lu, H. C.; Gustafsson, T.; Garfunkel, E. Growth Mechanism of Thin Silicon Oxide Films on Si(100) Studied by Medium-Energy Ion Scattering. Phys. Rev. B. 1995, 52, 1759–1775. DOI: 10.1103/PhysRevB.52.1759.
  • Habib, S. B.; Gonzalez, E., II; Hicks, R. F. Atmospheric Oxygen Plasma Activation of Silicon (100) Surfaces. J. Vac. Sci. Technol. A. 2010, 28, 476–485. DOI: 10.1116/1.3374738.
  • Hutter, J. L.; Bechhoefer, J. Calibration of Atomic-Force Microscope Tips. Rev. Sci. Instrum. 1993, 64, 1868–1873. DOI: 10.1063/1.1143970.
  • Hao, H. W.; Baró, A. M.; Sáenz, J. J. Electrostatic and Contact Forces in Force Microscopy. J. Vac. Sci. Technol. B. 1991, 9, 1323–1328. DOI: 10.1116/1.585188.
  • Israelachvilli, J.;. Intermolecular and Surface Forces; Elsevier Pte Ltd: Singapore, 2011; pp 253–255.
  • Senden, T. J.; Drummond, C. J. Surface Chemistry and Tip-Sample Interactions in Atomic Force Microscopy. Colloids Surf. A. 1995, 94, 29–51. DOI: 10.1016/0927-7757(94)02954-Q.
  • Rabinovich, Y. I.; Adler, J. J.; Ata, A.; Singh, R. K.; Moudgil, B. M. Adhesion between Nanoscale Rough Surfaces - I. Role of Asperity Geometry. J. Colloid Interface Sci. 2000, 232, 10–16. DOI: 10.1006/jcis.2000.7167.
  • Asay, D. B.; Kim, S. H. Evolution of the Adsorbed Water Layer Structure on Silicon Oxide at Room Temperature. J. Phys. Chem. B. 2005, 109, 16760–16763. DOI: 10.1021/jp053042o.
  • Adamson, A. W.; Gast, A. P. Physical Chemistry of Surfaces, 6th ed.; John Wiley & Sons: New York, 1996.
  • Zhao, Y. P.;. Physical Mechanics of Surfaces and Interfaces; Science Press: Beijing, 2012.
  • Chilamakuri, S. K.; Bhushan, B. A Comprehensive Kinetic Meniscus Model for Prediction of Long-Term Static Friction. J. Appl. Phys. 1999, 86, 4649–4656. DOI: 10.1063/1.371416.
  • Lai, T.; Meng, Y. Behaviors of Time-Dependent and Time-Independent Adhesion Forces Revealed Using an AFM under Different Humidities and Measuremental Protocols. Int. J. Adhes. Adhes. 2017, 78, 121–134. DOI: 10.1016/j.ijadhadh.2017.06.007.
  • Rabinovich, Y. I.; Esayanur, M. S.; Moudgil, B. M. Capillary Forces between Two Spheres with a Fixed Volume Liquid Bridge: Theory and Experiment. Langmuir. 2005, 21, 10992–10997. DOI: 10.1021/la0517639.
  • Lambert, P.; Chau, A.; Delchambre, A.; Regnier, S. Comparison between Two Capillary Forces Models. Langmuir. 2008, 24, 3157–3163.
  • Mittal, K. L.; Jaiswal, R. Particle Adhesion and Removal; John Wiley & Sons: Hoboken, 2015.
  • Suni, T.; Henttinen, K.; Suni, I.; Mäkinen, J. Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2. J. Electrochem. Soc. 2002, 149, G348–G351. DOI: 10.1149/1.1477209.
  • Wiemer, M.; Wuensch, D.; Braeuer, J.; Gessner, T. Plasma-Activated Bonding. In Handbook of Wafer Bonding; Ramm, P., Lu, J., Taklo, M., Eds.; Wiley-VCH: Weinheim, 2012; pp 101–118.
  • Chiang, C. M.; Zegarski, B. R.; Dubois, L. H. First Observation of Strained Siloxane Bonds on Silicon Oxide Thin Films. J. Phys. Chem. 1993, 97, 6948–6950. DOI: 10.1021/j100129a004.
  • Grabbe, A.; Michalske, T. A.; Smith, W. L. Strained Siloxane Rings on the Surface on Silica: Their Reaction with Organosiloxanes, Organosilanes, and Water. J. Phys. Chem. 1995, 99, 4648–4654. DOI: 10.1021/j100013a040.
  • Chabal, Y. J.; Raghavachari, K.; Zhang, X.; Garfunkel, E. Silanone (si = O) on Si(100): Intermediate for Initial Silicon Oxidation. Phys. Rev. B. 2002, 66, 161315. DOI: 10.1103/PhysRevB.66.161315.
  • Wiegand, M.; Reiche, M.; Gösele, U. Time-Dependent Surface Properties and Wafer Bonding of O2 - Plasma - Treated Silicon (100) Surfaces. J. Electrochem. Soc. 2000, 147, 2734–2740. DOI: 10.1149/1.1393597.
  • Zhuravlev, L.;. The Surface Chemistry of Amorphous Silica. Zhuravlev Model. Colloids Surf. A Physicochem. Eng. Asp. 2000, 173(1–38). DOI: 10.1016/S0927-7757(00)00556-2.
  • Nishijima, M.; Edamoto, K.; Kubota, Y.; Tanaka, S.; Onchi, M. Vibrational Electron Energy Loss Spectroscopy of the Si(111)(7×7)–H2O(D2O) System. J. Chem. Phys. 1986, 84, 6458–6465. DOI: 10.1063/1.450741.
  • Zhuravlev, L.;. Concentration of Hydroxyl Groups on the Surface of Amorphous Silicas. Langmuir. 1987, 3, 316–318. DOI: 10.1021/la00075a004.
  • Katsuki, F.; Kamei, K.; Saguchi, A.; Takahashi, W.; Watanabe, J. AFM Studies on the Difference in Wear Behavior between Si and SiO2 in KOH Solution. J. Electrochem. Soc. 2000, 147, 2328–2331. DOI: 10.1149/1.1393529.
  • Katsuki, F.;. Single Asperity Tribochemical Wear of Silicon by Atomic Force Microscopy. J. Mater. Res. 2009, 24, 173–178. DOI: 10.1557/jmr.2009.0024.
  • Wang, X.; Kim, S. H.; Chen, C.; Chen, L.; He, H.; Qian, L. Humidity Dependence of Tribochemical Wear of Monocrystalline Silicon. ACS Appl. Mater. Inter. 2015, 7, 14785–14792. DOI: 10.1021/acsami.5b03043.
  • Wang, X.; Guo, J.; Chen, C.; Chen, L.; Qian, L. A Simple Method to Control Nanotribology Behaviors of Monocrystalline Silicon. J. Appl. Phys. 2016, 119, 044304. DOI: 10.1063/1.4940882.
  • D’Souza, A. S.; Pantano, C. G. Mechanisms for Silanol Formation on Amorphous Silica Fracture Surfaces. J. Am. Ceram. Soc. 1999, 82, 1289–1293. DOI: 10.1111/j.1151-2916.1999.tb01909.x.
  • Bolis, V.; Fubini, B.; Marchese, L.; Martra, G.; Costa, D. Hydrophilic and Hydrophobic Sites on Dehydrated Crystalline and Amorphous Silicas. J. Chem. Soc. Faraday Trans. 1991, 87, 497–505. DOI: 10.1039/FT9918700497.
  • Williams, T. S.; Hicks, R. F. Aging Mechanism of the Native Oxide on Silicon (100) following Atmospheric Oxygen Plasma Cleaning. J. Vac. Sci. Technol. A. 2011, 29, 041403. DOI: 10.1116/1.3597436.
  • Hoshino, T.; Kurata, Y.; Terasaki, Y.; Susa, K. Mechanism of Polishing of SiO2 Films by CeO2 Particles. J. Non-Cryst. Solids. 2001, 283, 129–136. DOI: 10.1016/S0022-3093(01)00364-7.
  • Maw, W.; Stevens, F.; Langford, S. C.; Dickinson, J. T. Single Asperity Tribochemical Wear of Silicon Nitride Studied by Atomic Force Microscopy. J. Appl. Phys. 2002, 92, 5103–5109. DOI: 10.1063/1.1510595.
  • Mai, C.; Sun, J.; Chen, H.; Mai, C.-K.; Li, M. Silicon Direct Bonding via Low-Temperature Wet Chemical Surface Activation. RSC Adv. 2016, 6, 37079–37084. DOI: 10.1039/C6RA05189H.
  • Lichtenberger, O.; Woltersdorf, J. On the Atomic Mechanisms of Water-Enhanced Silicon Wafer Direct Bonding. Mater. Chem. Phys. 1996, 44, 222–232. DOI: 10.1016/0254-0584(96)80060-5.
  • Hopcroft, M. A.; Nix, W. D.; Kenny, T. W. What Is the Young’s Modulus of Silicon? J. Microelectromech. S. 2010, 19, 229–238. DOI: 10.1109/JMEMS.2009.2039697.
  • Gonzalez, E., II; Barankin, M. D.; Guschl, P. C.; Hicks, R. F. Remote Atmospheric-Pressure Plasma Activation of the Surfaces of Polyethylene Terephthalate and Polyethylene Naphthalate. Langmuir. 2008, 24, 12636–12643. DOI: 10.1021/la802296c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.