151
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the peeling and pull-off behavior of adhesive elastic fibers via a novel computational beam interaction model

ORCID Icon, ORCID Icon & ORCID Icon
Pages 730-759 | Received 01 Aug 2019, Accepted 28 Nov 2019, Published online: 23 Dec 2019

References

  • French, R. H.; Parsegian, V. A.; Podgornik, R.; Rajter, R. F.; Jagota, A.; Luo, J.; Asthagiri, D.; Chaudhury, M. K.; Chiang, Y. M.; Granick, S.; et al. Long Range Interactions in Nanoscale Science. Rev. Mod. Phys. 2010, 82(2), 1887–1944. DOI: 10.1103/RevModPhys.82.1887.
  • Persson, B. N. J. On the Mechanism of Adhesion in Biological Systems. J. Chem. Phys. 2003, 118(16), 7614–7621. DOI: 10.1063/1.1562192.
  • Israelachvili, J. N. Intermolecular and Surface Forces, 3rd ed.; London: Academic press, 2011.
  • Parsegian, V. A. Van Der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists; New York, NY: Cambridge University Press, 2005.
  • Sauer, R. A. A Survey of Computational Models for Adhesion. J. Adhes. 2016, 92(2), 81–120. DOI: 10.1080/00218464.2014.1003210.
  • Grill, M. J.; Meier, C.; Wall, W. A. A Computational Model for Molecular Interactions between Curved Slender Fibers Undergoing Large 3D Deformations with A Focus on Electrostatic, Van Der Waals and Repulsive Steric Forces. arXiv Preprint, arXiv. 1907.12997.
  • Sauer, R. A. Challenges in Computational Nanoscale Contact Mechanics. In Recent Developments and Innovative Applications in Computational Mechanics; Mueller-Hoeppe, D., Loehnert, S., Reese, S., Eds.; Springer: Berlin, Heidelberg, 2011; pp 39–46.
  • Sauer, R. A. An Atomic Interaction-based Rod Formulation for Modelling Gecko Adhesion. Proc. Appl. Math. Mech. 2008, 8(1), 10193–10194. DOI: 10.1002/pamm.200810193.
  • Sauer, R. A. The Peeling Behavior of Thin Films with Finite Bending Stiffness and the Implications on Gecko Adhesion. J. Adhes. 2011, 87(7–8), 624–643. DOI: 10.1080/00218464.2011.596084.
  • Sauer, R. A.; Mergel, J. C. A Geometrically Exact Finite Beam Element Formulation for Thin Film Adhesion and Debonding. Finite Ele. Anal. Des. 2014, 86, 120–135. DOI: 10.1016/j.finel.2014.03.009.
  • Mergel, J. C.; Sauer, R. A.; Saxena, A. Computational Optimization of Adhesive Microstructures Based on a Nonlinear Beam Formulation. Struct. Multidiscip. Optim. 2014, 50(6), 1001–1017. DOI: 10.1007/s00158-014-1091-1.
  • Mergel, J. C.; Sauer, R. A. On the Optimum Shape of Thin Adhesive Strips for Various Peeling Directions. J. Adhes. 2014, 90(5–6), 526–544. DOI: 10.1080/00218464.2013.840538.
  • Sauer, R. A. Local Finite Element Enrichment Strategies for 2D Contact Computations and a Corresponding Post-processing Scheme. Comput. Mech. 2013, 52(2), 301–319. DOI: 10.1007/s00466-012-0813-8.
  • Ahmadi, S.; Menon, C. A New Model for Predicting Fiber Clumping Phenomenon in Bio-inspired Dry Adhesives. J. Adhes. 2014, 90(2), 135–155. DOI: 10.1080/00218464.2013.768946.
  • Negi, V.; Picu, R. C. Mechanical Behavior of Cross-linked Random Fiber Networks with Inter-fiber Adhesion. J. Mech. Phys. Solids. 2018, 122, 418–434. DOI: 10.1016/j.jmps.2018.09.027.
  • Shavezipur, M.; Li, G. H.; Laboriante, I.; Gou, W. J.; Carraro, C.; Maboudian, R. A Finite Element Technique for Accurate Determination of Interfacial Adhesion Force in MEMS Using Electrostatic Actuation. J. Micromech. Microeng. 2011, 21(11), 115025. DOI: 10.1088/0960-1317/21/11/115025.
  • Wall, W. A.; Popp, A.; Kronbichler, M.; Mayr, M.; Meier, C.; Vuong, A.-T.; Ager, C.; Bräu, F.; Grill, M. J. BACI: A Multiphysics Simulation Environment; 2018.
  • Reissner, E. On Finite Deformations of Space-curved Beams. Z. Angew. Math. Phys. 1981, 32(6), 734–744. DOI: 10.1007/BF00946983.
  • Simo, J. C. A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem. Part I. Comput. Methods Appl. Mech. Eng. 1985, 49, 55–70. DOI: 10.1016/0045-7825(85)90050-7.
  • Simo, J. C.; Vu Quoc, L. A Three Dimensional Finite Strain Rod Model Part II: Computational Aspects. Comput. Methods Appl. Mech. Eng. 1986, 58, 79–116. DOI: 10.1016/0045-7825(86)90079-4.
  • Crisfield, M. A.; Jelenic, G. Objectivity of Strain Measures in the Geometrically Exact Three-dimensional Beam Theory and Its Finite-element Implementation, Proceedings of the Royal Society of London. Ser. A. 1999, 455, 1125–1147. DOI: 10.1098/rspa.1999.0352.
  • Jelenic, G.; Crisfield, M. A. Geometrically Exact 3D Beam Theory: Implementation of a Strain-invariant Finite Element for Statics and Dynamics. Comput. Methods Appl. Mech. Eng. 1999, 171(1–2), 141–171. DOI: 10.1016/S0045-7825(98)00249-7.
  • Meier, C.; Grill, M. J.; Wall, W. A.; Popp, A. Geometrically Exact Beam Elements and Smooth Contact Schemes for the Modeling of Fiber-based Materials and Structures. Int. J. Solids Struct. 2018, 154, 124–146. DOI: 10.1016/j.ijsolstr.2017.07.020.
  • Meier, C.; Popp, A.; Wall, W. A. Geometrically Exact Finite Element Formulations for Slender Beams: Kirchhoff–Love Theory versus Simo–Reissner Theory. Arch. Comput. Methods Eng. 2019, 26(1), 163–243. DOI: 10.1007/s11831-017-9232-5.
  • Langbein, D. Van Der Waals Attraction between Cylinders, Rods or Fibers. Physik Der Kondensierten Materie. 1972, 15(1), 61–86.
  • Wriggers, P.; Zavarise, G. On Contact between Three-dimensional Beams Undergoing Large Deflections. Commun. Numer. Methods in Eng. 1997, 13(6), 429–438. DOI: 10.1002/(SICI)1099-0887(199706)13:6<>1.0.CO;2-D.
  • Meier, C.; Popp, A.; Wall, W. A. A Finite Element Approach for the Line-to-line Contact Interaction of Thin Beams with Arbitrary Orientation. Comput. Methods Appl. Mech. Eng. 2016, 308, 377–413. DOI: 10.1016/j.cma.2016.05.012.
  • Meier, C.; Wall, W. A.; Popp, A. A Unified Approach for Beam-to-beam Contact. Comput. Methods Appl. Mech. Eng. 2017, 315, 972–1010. DOI: 10.1016/j.cma.2016.11.028.
  • Cyron, C. J.; Wall, W. A. Consistent Finite-element Approach to Brownian Polymer Dynamics with Anisotropic Friction. Phys. Rev. E. 2010, 82, 66705. DOI: 10.1103/PhysRevE.82.066705.
  • Kendall, K. Thin-Film Peeling - The Elastic Term. J. Phys. D: Appl. Phys. 1975, 8, 1449–1452. DOI: 10.1088/0022-3727/8/13/005.
  • Shogren, R.; Gerken, T. A.; Jentoft, N. Role of Glycosylation on the Conformation and Chain Dimensions of O-linked Glycoproteins: Light-scattering Studies of Ovine Submaxillary Mucin. Biochemistry. 1989, 28(13), 5525–5536. DOI: 10.1021/bi00439a029.
  • Round, A. N.; Berry, M.; McMaster, T. J.; Stoll, S.; Gowers, D.; Corfield, A. P.; Miles, M. J. Heterogeneity and Persistence Length in Human Ocular Mucins. Biophys. J. 2002, 83(3), 1661–1670. DOI: 10.1016/S0006-3495(02)73934-9.
  • Marczynski, M.; Käsdorf, B. T.; Altaner, B.; Wenzler, A.; Gerland, U.; Lieleg, O. Transient Binding Promotes Molecule Penetration into Mucin Hydrogels by Enhancing Molecular Partitioning. Biomater. Sci. 2018, 6(12), 3373–3387. DOI: 10.1039/C8BM00664D.
  • Sauer, R. A. Enriched Contact Finite Elements for Stable Peeling Computations. Int. J. Numer. Methods Eng. 2011, 87(6), 593–616. DOI: 10.1002/nme.v87.6.
  • Müller, K. W.; Bruinsma, R. F.; Lieleg, O.; Bausch, A. R.; Wall, W. A.; Levine, A. J. Rheology of Semiflexible Bundle Networks with Transient Linkers. Phys. Rev. Lett. 2014, 112(23), 238102. DOI: 10.1103/PhysRevLett.112.238102.
  • Müller, K. W.; Meier, C.; Wall, W. A. Resolution of Sub-element Length Scales in Brownian Dynamics Simulations of Biopolymer Networks with Geometrically Exact Beam Finite Elements. J. Comput. Phys. 2015, 303, 185–202. DOI: 10.1016/j.jcp.2015.09.038.
  • Slepukhin, V. M.; Grill, M. J.; Müller, K. W.; Wall, W. A.; Levine, A. J. Conformation of a Semiflexible Filament in a Quenched Random Potential. Phys. Rev. E. 2019, 99(4), 042501. DOI: 10.1103/PhysRevE.99.042501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.