222
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Interfacial shear strength and fracture toughness between single carbon fiber and TiO2 matrix under microbond test

, , &
Pages 821-839 | Received 27 Sep 2019, Accepted 21 Dec 2019, Published online: 29 Dec 2019

References

  • Shirvanimoghaddam, K.; Hamim, S. U.; Akbari, M. K.; Fakhrhoseini, S. M.; Khayyam, H.; Pakseresht, A. H.; Ghasali, E.; Zabet, M.; Munir, K. S.; Jia, S. Carbon Fiber Reinforced Metal Matrix Composites: Fabrication Processes and Properties. Compos. Part A Appl. Sci. Manuf. 2017, 92, 70–96. DOI: 10.1016/j.compositesa.2016.10.032.
  • Shen, J.; You, G.; Long, S.; Pan, F. Abnormal Macropore Formation during Double-sided Gas Tungsten Arc Welding of Magnesium AZ91D Alloy. Mater. Charact. 2008, 59, 1059–1065. DOI: 10.1016/j.matchar.2007.08.021.
  • Mordike, B.; Ebert, T. Magnesium: Properties—Applications—Potential. Mater. Sci. Eng. A. 2001, 302, 37–45. DOI: 10.1016/S0921-5093(00)01351-4.
  • Lancin, M.; Marhic, C. TEM Study of Carbon Fibre Reinforced Aluminium Matrix Composites: Influence of Brittle Phases and Interface on Mechanical Properties. J. Eur. Ceram. Soc. 2000, 20, 1493–1503. DOI: 10.1016/s0955-2219(00)00021-2.
  • Veillere, A.; Sundaramurthy, A.; Heintz, J. M.; Douin, J.; Lahaye, M.; Chandra, N.; Enders, S.; Silvain, J. F. Relationship between Interphase Chemistry and Mechanical Properties at the Scale of Micron in Cu–Cr/CF Composite. Acta Mater. 2011, 59, 1445–1455. DOI: 10.1016/j.actamat.2010.11.006.
  • Landry, K.; Kalogeropoulou, S.; Eustathopoulos, N. Wettability of Carbon by Aluminum and Aluminum Alloys. Mater. Sci. Eng. A. 1998, 254, 99–111. DOI: 10.1016/s0921-5093(98)00759-x.
  • Zhang, S.; Chen, G.; Pei, R.; Wang, Y.; Daguang, L.; Wang, P.; Gaohui, W. Effect of Y Content on Interfacial Microstructures and Mechanical Properties of Cf/Mg Composite. Mater. Sci. Eng. A. 2015, 647, 105–112. DOI: 10.1016/j.msea.2015.08.076.
  • Zhang, S.; Chen, G.; Pei, R.; Hussain, M.; Wang, Y.; Li, D.; Wang, P.; Wu, G. Effect of Gd Content on Interfacial Microstructures and Mechanical Properties of Cf/Mg Composite. Mater. Des. 2015, 65, 567–574. DOI: 10.1016/j.matdes.2014.09.045.
  • Han, S. H.; Oh, H. J.; Lee, H. C.; Kim, S. S. The Effect of Post-processing of Carbon Fibers on the Mechanical Properties of Epoxy-based Composites. Compos. B Eng. 2013, 45, 172–177. DOI: 10.1016/j.compositesb.2012.05.022.
  • Zhang, G.; Sun, S.; Yang, D.; Dodelet, J.-P.; Sacher, E. The Surface Analytical Characterization of Carbon Fibers Functionalized by H2SO4/HNO3 Treatment. Carbon. 2008, 46, 196–205. DOI: 10.1016/j.carbon.2007.11.002.
  • Wang, Y.; Iqbal, Z.; Mitra, S. Rapidly Functionalized, Water-dispersed Carbon Nanotubes at High Concentration. J. Am. Chem. Soc. 2006, 128, 95–99. DOI: 10.1021/ja053003q.
  • Xu, C.; Chen, J.; Cui, Y.; Han, Q.; Choo, H.; Liaw, P. K.; Wu, D. Influence of the Surface Treatment on the Deposition of Platinum Nanoparticles on the Carbon Nanotubes. Adv. Eng. Mater. 2006, 8, 73–77. DOI: 10.1002/adem.200500179.
  • Wang, C.; Ji, X.; Roy, A.; Silberschmidt, V. V.; Chen, Z. Shear Strength and Fracture Toughness of Carbon Fibre/epoxy Interface: Effect of Surface Treatment. Mater. Des. 2015, 85, 800–807. DOI: 10.1016/j.matdes.2015.07.104.
  • Bouix, J.; Berthet, M.; Bosselet, F.; Favre, R.; Peronnet, M.; Rapaud, O.; Viala, J.; Vincent, C.; Vincent, H. Physico-chemistry of Interfaces in Inorganic-matrix Composites. Compos. Sci. Technol. 2001, 61, 355–362. DOI: 10.1016/s0266-3538(00)00107-x.
  • Dorner-Reisel, A.; Nishida, Y.; Klemm, V.; Nestler, K.; Marx, G.; Müller, E. Investigation of Interfacial Interaction between Uncoated and Coated Carbon Fibres and the Magnesium Alloy AZ91. Anal. Bioanal. Chem. 2002, 374, 635–638. DOI: 10.1007/s00216-002-1391-y.
  • Pei, Z.; Li, K.; Gong, J.; Shi, N.; Elangovan, E.; Sun, C. Micro-structural and Tensile Strength Analyses on the Magnesium Matrix Composites Reinforced with Coated Carbon Fiber. J. Mater. Sci. 2009, 44, 4124–4131. DOI: 10.1007/s10853-009-3604-7.
  • Katzman, H. A.;. Fibre Coatings for the Fabrication of Graphite-reinforced Magnesium Composites. J. Mater. Sci. 1987, 22, 144–148. DOI: 10.1007/bf01160563.
  • Chen, R.; Li, X. A Study of Silica Coatings on the Surface of Carbon or Graphite Fiber and the Interface in A Carbon/magnesium Composite. Compos. Sci. Technol. 1993, 49, 357–362. DOI: 10.1016/0266-3538(93)90067-q.
  • Wu, F.; Zhu, J.; Chen, Y.; Zhang, G. The Effects of Processing on the Microstructures and Properties of Gr/Mg Composites. Mater. Sci. Eng. A. 2000, 277, 143–147. DOI: 10.1016/s0921-5093(99)00548-1.
  • Feldhoff, A.; Pippel, E.; Wolterdorf, J. Interface Engineering of Carbon‐Fiber Reinforced Mg–Al Alloys. Adv. Eng. Mater. 2000, 2, 471–480. DOI: 10.1002/1527-2648(200008)2:83.0.CO;2-S.
  • Reischer, F.; Pippel, E.; Woltersdorf, J.; Stöckel, S.; Marx, G. Carbon Fibre-reinforced Magnesium: Improvement of Bending Strength by Nanodesign of Boron Nitride Interlayers. Mater. Chem. Phys. 2007, 104, 83–87. DOI: 10.1016/j.matchemphys.2007.02.086.
  • Barrow, D. Applications of Sol Gel Ceramic Coatings, Key Engineering Materials. Trans Tech Publications, 1996, 122, 443–450.
  • Wen, T.; Gao, J.; Shen, J.; Zhou, Z. Preparation and Characterization of TiO2 Thin Films by the Sol-gel Process. J. Mater. Sci. 2001, 36, 5923–5926. DOI: 10.1023/A:1012989012840.
  • Li, J.; Xia, C.; Zhang, Y.; Wang, M.; Wang, H. Effects of TiO2 Coating on Microstructure and Mechanical Properties of Magnesium Matrix Composite Reinforced with Mg2B2O5w. Mater. Des. 2012, 39, 334–337. DOI: 10.1016/j.matdes.2012.02.059.
  • Xia, C. J.; Wang, M. L.; Wang, H. W.; Zhou, C. The Effect of Aluminum Content on TiO2 Coated Carbon Fiber Reinforced Magnesium Alloy Composites, Applied Mechanics and Materials. Trans Tech Publications, 2014, 488, 30–35.
  • Nairn, J. A.;. Analytical Fracture Mechanics Analysis of the Pull-out Test Including the Effects of Friction and Thermal Stresses. Adv. Compos. Lett. 2000, 9, 373–383. DOI: 10.1177/096369350000900601.
  • Liu, C.-H.; Nairn, J. A. Analytical and Experimental Methods for a Fracture Mechanics Interpretation of the Microbond Test Including the Effects of Friction and Thermal Stresses. Int. J. Adhes. Adhes. 1999, 19, 59–70. DOI: 10.1016/S0143-7496(98)00057-8.
  • Scheer, R.; Nairn, J. A Comparison of Several Fracture Mechanics Methods for Measuring Interfacial Toughness with Microbond Tests. J. Adhes. 1995, 53, 45–68. DOI: 10.1080/00218469508014371.
  • Ji, X.; Wang, C.; Francis, B. A.; Chia, E. S.; Zheng, L.; Yang, J.; Joshi, S. C.; Chen, Z. Mechanical and Interfacial Properties Characterisation of Single Carbon Fibres for Composite Applications. Exp. Mech. 2015, 55, 1057–1065. DOI: 10.1007/s11340-015-0007-3.
  • Reynolds, W. N.; Sharp, J. V. Crystal Shear Limit to Carbon Fibre Strength. Carbon. 1974, 12, 103–110. DOI: 10.1016/0008-6223(74)90018-9.
  • Waterbury, M. C.; Drzal, L. T. On the Determination of Fiber Strengths by In-situ Fiber Strength Testing. J. Compos. Tech. Res. 1991, 13, 22–28. DOI: 10.1520/CTR10070J.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.