323
Views
19
CrossRef citations to date
0
Altmetric
Research Article

The effects of geometrical dimensions on the failure of composite-to-composite adhesively bonded joints

ORCID Icon, , , , , & show all
Pages 1024-1051 | Received 28 Jul 2019, Accepted 02 Feb 2020, Published online: 09 Feb 2020

References

  • Sun, S.; Liu, F.; Xue, S.; Zeng, M.; Zeng, F. Review on Wind Power Development in China: Current Situation and Improvement Strategies to Realize Future Development. Renew. Sustain. Energy Rev. 2015, 45, 589–599. DOI: 10.1016/j.rser.2015.02.018.
  • Li, Q. A.; Kamada, Y.; Maeda, T.; Murata, J.; Iida, K.; Okumura, Y. Fundamental Study on Aerodynamic Force of Floating Offshore Wind Turbine with Cyclic Pitch Mechanism. Energy. 2016, 99, 20–31. DOI: 10.1016/j.energy.2016.01.049.
  • Hernández, C. V.; Telsnig, T.; Pradas, A. V. JRC Wind Energy Status Report-2016 Edition; EUR 28530 EN; Publications Office of the European Union: Petten, The Netherlands, 2017. https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/jrc-wind-energy-status-report-2016-edition (accessed Jan 31, 2020).
  • Qin, Z. W.; Zhang, L.; Yang, K.; Wang, J. H.; Liao, C. C.; Xu, J. Z. Determining Division Location for Sectional Wind Turbine Blades. Energies. 2017, 10, 1404. DOI: 10.3390/en10091404.
  • Qin, Z.; Wang, J.; Yang, K.; Yu, G.; Xu, Y.; Xu, J. Design and Nonlinear Structural Responses of Multi-bolted Joint Composite Box-beam for Sectional Wind Turbine Blades. Compos. Struct. 2018, 206, 801–813. DOI: 10.1016/j.compstruct.2018.08.073.
  • Mishnaevsky, L.; Branner, K.; Petersen, H.; Beauson, J.; Mcgugan, M.; Sørensen, B. Materials for Wind Turbine Blades: An Overview. Materials. 2017, 10, 1285. DOI: 10.3390/ma10111285.
  • Davies, P.; Sohier, L.; Cognard, J. Y.; Bourmaud, A.; Choqueuse, D.; Rinnert, E.; Créac’Hcadec, R. Influence of Adhesive Bond Line Thickness on Joint Strength. Int. J. Adhes. Adhes. 2009, 29, 724–736. DOI: 10.1016/j.ijadhadh.2009.03.002.
  • Griffin, D. A.; Malkin, M. C. Lessons Learned from Recent Blade Failures: Primary Causes and Risk-Reducing Technologies. Proceedings of 49 AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, USA, Jan 4–7, 2011.
  • Ataya, S.; Ahmed, M. M. Damages of Wind Turbine Blade Trailing Edge: Forms, Location, and Root Causes. Eng. Fail. Anal. 2013, 35, 480–488. DOI: 10.1016/j.engfailanal.2013.05.011.
  • Sørensen, B. F.; Jørgensen, E.; Debel, C. P.; Nsen, F. J.; Jensen, H. M.; Jacobsen, T. K.; Jensen, M.; Halling, K. M. Improved Design of Large Wind Turbine Blade of Fibre Composites Based on Studies of Scale Effects (Phase 1)-Summary Report; Risø-R-1390(EN); Risø National Laboratory: Roskidle, Denmark, 2004. https://www.osti.gov/etdeweb/servlets/purl/20553530 (accessed Jan 31, 2020).
  • Jensen, F. M.; Falzon, B. G.; Ankersen, J.; Stang, H. Structural Testing and Numerical Simulation of 34m Composite Wind Turbine Blade. Compos. Struct. 2006, 76, 52–61. DOI: 10.1016/j.compstruct.2006.06.008.
  • Paquette, J.; Dam, J. V.; Hughes, S. Structural Testing of 9 M Carbon Fiber Wind Turbine Research Blades. Proceedings of 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, Jan 8–11, 2007.
  • Jensen, M.; Kling, A.; Sorensen, J. D. Change in Failure Type When Wind Turbine Blades Scale-up. Presented at the 2012 Sandia Wind Turbine Workshop, Albuquerque, NM, USA, May 30-June 1, 2012.
  • Eder, M. A.; Bitsche, R. D.; Nielsen, M.; Branner, K. A Practical Approach to Fracture Analysis at the Trailing Edge of Wind Turbine Rotor Blades. Wind Energy. 2013, 17, 483–497. DOI: 10.1002/we.1591.
  • Yang, J.; Peng, C.; Xiao, J.; Zeng, J.; Xing, S.; Jin, J.; Deng, H. Structural Investigation of Composite Wind Turbine Blade considering Structural Collapse in Full-scale Static Tests. Compos. Struct. 2013, 97, 15–29. DOI: 10.1016/j.compstruct.2012.10.055.
  • Haselbach, P. U.; Branner, K. Effect of Trailing Edge Damage on Full-scale Wind Turbine Blade Failure. Proceedings of the 20th International Conference on Composite Materials, Copenhagen, Denmark, July 19–24, 2015.
  • Al-Khudairi, O.; Hadavinia, H.; Little, C.; Gillmore, G.; Greaves, P.; Dyer, K. Full-scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance. Materials. 2017, 10, 1152. DOI: 10.3390/ma10101152.
  • Al-Khudairi, O.; Ghasemnejad, H. To Improve Failure Resistance in Joint Design of Composite Wind Turbine Blade Materials. Renewable Energy. 2015, 81, 936–951. DOI: 10.1016/j.renene.2015.04.015.
  • Shah, O. R.; Tarfaoui, M. Effect of Adhesive Thickness on the Mode I and II Strain Energy Release Rates. Comparative Study between Different Approaches for the Calculation of Mode I & II SERR’s. Compos. Pt. B-Eng. 2016, 96, 354–363. DOI: 10.1016/j.compositesb.2016.04.042.
  • Lahuerta, F.; de Ruiter, M.; Espinosa, L.; Koorn, N.; Smissaert, D. Assessment of Wind Turbine Blade Trailing Edge Failure with Sub-component Tests. Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, Aug 20–25, 2017.
  • Rosemeier, M.; Antoniou, A.; Chen, X.; Lahuerta, F.; Berring, P.; Branner, K. Trailing Edge Subcomponent Testing for Wind Turbine Blades–Part A: Comparison of Concepts. Wind Energy. 2019, 22, 487–498. DOI: 10.1002/we.2301.
  • Matthews, F. L.; Kilty, P. F.; Godwin, E. W. A Review of the Strength of Joints in Fibre-reinforced Plastics. Part 2. Adhesively Bonded Joints. Compos. Pt. B-Eng. 1982, 13, 29–37. DOI: 10.1016/0010-4361(82)90168-9.
  • Banea, M.; da Silva, L. F. M. Adhesively Bonded Joints in Composite Materials: An Overview. P. I. Mech. Eng. L-J. Mat. 2009, 223, 1–18. DOI: 10.1243/14644207JMDA219.
  • Budhe, S.; Banea, M. D.; de Barros, S.; da Silva, L. F. M. An Updated Review of Adhesively Bonded Joints in Composite Materials. Int. J. Adhes. Adhes. 2017, 72, 30–42. DOI: 10.1016/j.ijadhadh.2016.10.010.
  • Gleich, D.; Van Tooren, M.; Beukers, A. Analysis and Evaluation of Bondline Thickness Effects on Failure Load in Adhesively Bonded Structures. J. Adhes. Sci. Technol. 2001, 15, 1091–1101. DOI: 10.1163/156856101317035503.
  • da Silva, L. F. M.; Rodrigues, T.; Figueiredo, M.; De Moura, M.; Chousal, J. Effect of Adhesive Type and Thickness on the Lap Shear Strength. J. Adhes. 2006, 82, 1091–1115. DOI: 10.1080/00218460600948511.
  • Canales, A. G. Evaluation of Bondline Thickness on Wind Turbine Blade Subcomponent. Master Dissertation, Eindhoven University of Technology, Delft, The Netherlands, 2008.
  • Seong, M.-S.; Kim, T.-H.; Nguyen, K.-H.; Kweon, J.-H.; Choi, J.-H. A Parametric Study on the Failure of Bonded Single-lap Joints of Carbon Composite and Aluminum. Compos. Struct. 2008, 86, 135–145. DOI: 10.1016/j.compstruct.2008.03.026.
  • Samborsky, D. D.; Eears, A. T.; Mandell, F. F. Static and Fatigue Testing of Thick Adhesive Joints for Wind Turbine Blades. Proceedings of 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, USA, Jan 5–8, 2009.
  • Grant, L.; Adams, R.; da Silva, L. F. M. Experimental and Numerical Analysis of Single-lap Joints for the Automotive Industry. Int. J. Adhes. Adhes. 2009, 29, 405–413. DOI: 10.1016/j.ijadhadh.2008.09.001.
  • Arenas, J. M.; Narbon, J. J.; Alía, C. Optimum Adhesive Thickness in Structural Adhesives Joints Using Statistical Techniques Based on Weibull Distribution. Int. J. Adhes. Adhes. 2010, 30, 160–165. DOI: 10.1016/j.ijadhadh.2009.12.003.
  • Vallée, T.; Correia, J. R.; Keller, T. Optimum Thickness of Joints Made of GFPR Pultruded Adherends and Polyurethane Adhesive. Compos. Struct. 2010, 92, 2102–2108. DOI: 10.1016/j.compstruct.2009.09.056.
  • Yang, S.; Wei, X.; Liang, L.; Wang, T.; Wei, Y. An Experimental Study on the Dependence of the Strength of Adhesively Bonded Joints with Thickness and Mechanical Properties of the Adhesives. J. Adhes. Sci. Technol. 2014, 28, 1055–1071. DOI: 10.1080/01694243.2014.884753.
  • Cole, B.; Li, L.; Wang, S. In Strength and Failure Modes of Thick–Adhesive Bonded Joints of Glass Fabric/Vinyl Ester Composite Laminates. Proceedings of the American Society for Composites 29th Annual Technical Conference, La Jolla, USA, Sep 8–10, 2014.
  • Li, J.; Yan, Y.; Zhang, T.; Liang, Z. Experimental Study of Adhesively Bonded CFRP Joints Subjected to Tensile Loads. Int. J. Adhes. Adhes. 2015, 57, 95–104. DOI: 10.1016/j.ijadhadh.2014.11.001.
  • Banea, M. D.; da Silva, L. F. M.; Campilho, R. The Effect of Adhesive Thickness on the Mechanical Behavior of a Structural Polyurethane Adhesive. J. Adhes. 2015, 91, 331–346. DOI: 10.1080/00218464.2014.903802.
  • Akhavan-Safar, A.; Ayatollahi, M.; da Silva, L. F. M. Strength Prediction of Adhesively Bonded Single Lap Joints with Different Bondline Thicknesses: A Critical Longitudinal Strain Approach. Int. J. Solids Struct. 2017, 109, 189–198. DOI: 10.1016/j.ijsolstr.2017.01.022.
  • Gültekin, K.; Akpinar, S.; Özel, A. The Effect of the Adherend Width on the Strength of Adhesively Bonded Single-lap Joint: Experimental and Numerical Analysis. Compos. Pt. B-Eng. 2014, 60, 736–745. DOI: 10.1016/j.compositesb.2014.01.022.
  • Işcan, B.; Adin, H. The Influence of Adherend Width on Tensile Strength and Failure Load of Z Joints Bonded with Adhesive. Int. J. Phys. Sci. 2012, 7, 5598–5606. DOI: 10.5897/IJPS12.394.
  • Kim, T.-H.; Kweon, J.-H.; Choi, J.-H. An Experimental Study on the Effect of Overlap Length on the Failure of Composite-to-aluminum Single-lap Bonded Joints. J. Reinf. Plast. Compos. 2008, 27, 1071–1081. DOI: 10.1177/0731684407087074.
  • da Silva, L. F. M.; Carbas, R. J. C.; Critchlow, G. W.; Figueiredo, M. A. V.; Brown, K. Effect of Material, Geometry, Surface Treatment and Environment on the Shear Strength of Single Lap Joints. Int. J. Adhes. Adhes. 2009, 29, 621–632. DOI: 10.1016/j.ijadhadh.2009.02.012.
  • Hosseinzadeh, R.; Shahin, K.; Taheri, F. On the Influence of Overlap Length on Static Capacity and Fatigue Life of Adhesively Bonded Joints with Tubular Composite Adherends Subject to Torsional Loading. J. Mater. Prod. Technol. 2011, 40, 165–185. DOI: 10.1504/IJMPT.2011.039929.
  • Neto, J.; Campilho, R. D.; da Silva, L. F. M. Parametric Study of Adhesive Joints with Composites. Int. J. Adhes. Adhes. 2012, 37, 96–101. DOI: 10.1016/j.ijadhadh.2012.01.019.
  • Asgari Mehrabadi, F. Experimental and Numerical Failure Analysis of Adhesive Composite Joints. Int. J. Aerosp. Eng. 2012, 2012. DOI: 10.1155/2012/925340.
  • Karachalios, E. F.; Adams, R. D.; da Silva, L. F. M. Single Lap Joints Loaded in Tension with Ductile Steel Adherends. Int. J. Adhes. Adhes. 2013, 43, 96–108. DOI: 10.1016/j.ijadhadh.2013.01.017.
  • Lee, H.; Pyo, S.; Kim, B. On Joint Strengths, Peel Stresses and Failure Modes in Adhesively Bonded Double-strap and Supported Single-lap GFRP Joints. Compos. Struct. 2009, 87, 44–54. DOI: 10.1016/j.compstruct.2007.12.005.
  • Zarouchas, D.; van Hemelrijck, D. Mechanical Characterization and Damage Assessment of Thick Adhesives for Wind Turbine Blades Using Acoustic Emission and Digital Image Correlation Techniques. J. Adhes. Sci. Technol. 2014, 28, 1500–1516. DOI: 10.1080/01694243.2012.698122.
  • Adams, R. D.; Comyn, J.; Wake, W. C. Structural Adhesive Joints in Engineering; Springer Science & Business Media: Heidelberg, 1997.
  • ASTM International. ASTM D5573-99 Standard Practice for Classifying Failure Modes in Fiber-Reinforced-Plastic (FRP) Joints. ASTM International: West Conshohocken, PA, 1999. www.astm.org DOI:10.1520/D5573-99.
  • Guo, X.; Guan, Z.; Liu, S.; Kong, J.; Yan, D.; Qiao, L. Effect of Lap Length on the Adhesive-bonded Single-lap Composite Joints. Sci. Technol. Rev. 2013, 31, 37–41. DOI: 10.3981/j.issn.1000-7857.2013.07.005.
  • Kim, H.; Kedward, K. Stress Analysis of In-Plane, Shear-Loaded, Adhesively Bonded Composite Joints and Assemblies; DOT/FAA/AR-01/7; U.S. Department of Transportation Federal Aviation Administration Office of Aviation Research: Washington, DC, 2001. https://www.niar.wichita.edu/agate/Documents/Materials/DOT-FAA-AR-01-07.pdf (accessed Jan 31, 2020).
  • Silva, L. F. M.; Adams, R. D. Techniques to Reduce the Peel Stresses in Adhesive Joints with Composites. Int. J. Adhes. Adhes. 2007, 27, 227–235. DOI: 10.1016/j.ijadhadh.2006.04.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.