7,596
Views
37
CrossRef citations to date
0
Altmetric
Review

Testing mechanical performance of adhesively bonded composite joints in engineering applications: an overview

, , , , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2133-2209 | Received 12 Jan 2021, Accepted 28 Apr 2021, Published online: 17 Aug 2021

References

  • Zuo, P.; Vassilopoulos, A. Review of Fatigue of Bulk Structural Adhesives and Thick Adhesive Joints. Int. Mater. Rev. 2020;66(5), 1–26.
  • Fay, P.;. 1 - History of Adhesive Bonding; Adams, R., Ed; Adhesive Bonding, Woodhead Publishing Series in Welding and Other Joining Technologies,  England: Woodhead Publishing, 2005; pp 3–22.
  • Sheppard, S. E.; Sweet, S. S.; Scott, J. W. The Jelly Strength of Gelatins and Glues. J. Ind. Eng. Chem. 1920, 12(10), 1007–1011. DOI: 10.1021/ie50130a028.
  • Skeist, I.;. Structural Adhesives: Chemistry and Technology. J. Polym. Sci. Part C. 1987, 25(3), 137. DOI: 10.1002/pol.1987.140250309.
  • Duncan, B.;. Developments in Testing Adhesive Joints. In Advances in Structural Adhesive Bonding; UK: Elsevier, 2010; pp 389–436.
  • Brockmann, W.; Geiß, P.; Klingen, J.; Schröder, B. Adhesive Bonding: Materials, Applications and Technology; WILEY - VCH verlag GmBH & co, KGaA, Weinheim, 2009.
  • Ashcroft, I.; Hughes, D.; Shaw, S. Adhesive Bonding of Fibre Reinforced Polymer Composite Materials. Assembly Autom. 2000, 20(2), 150–161. DOI: 10.1108/01445150010321797.
  • Sallam, H. Structural Joints in Polymeric Composite Materials, Prepared for Permanent Scientific Committee 56 for Structural and Construction Engineering 2004.
  • Brunner, A.;. 8 - Fracture Mechanics Characterization of Polymer Composites for Aerospace Applications. In Polymer Composites in the Aerospace Industry; Irving, P., Soutis, C., Eds.; UK: Woodhead Publishing, 2015; pp 191–230.
  • Banea, M. D.; da Silva, L. F. Adhesively Bonded Joints in Composite Materials: An Overview. Proc. Inst. Mech. Eng. Part L. 2009, 223(1), 1–18. DOI: 10.1243/14644207JMDA219.
  • Hussey, R.; Wilson, J. Structural Adhesives: Directory and Databook; Chapman & Hall, London, UK: Springer Science & Business Media, 1996.
  • Swayze, D. L. Adhesives-modern Tool of Fabrication, in: Pre-1964 SAE Technical Papers, SAE International, USA, 1946, pp. 412–417.
  • Adams, R.; Wake, W. Structural Adhesive Joints in Engineering; England: Elsevier, 1986.
  • Wahab, M. M. A.; Hilmy, I.; Ashcroft, I. A.; Crocombe, A. D. Evaluation of Fatigue Damage in Adhesive Bonding: Part 1: Bulk Adhesive. J. Adhes. Sci. Technol. 2010, 24(2), 305–324. DOI: 10.1163/016942409X12508517390798.
  • Burst, N.; Adams, D. O.; Gascoigne, H. E. Investigating the Thin-film versus Bulk Material Properties of Structural Adhesives. J. Adhes. 2011, 87(1), 72–92. DOI: 10.1080/00218464.2011.538326.
  • Hart-Smith, L.;. Adhesive Bonding of Aircraft Primary Structures. SAE Transactions. 1980, 89(4), 3718–3732.
  • Nairn, J. A.;. Energy Release Rate Analysis for Adhesive and Laminate Double Cantilever Beam Specimens Emphasizing the Effect of Residual Stresses. Int. J. Adhes. Adhes. 2000, 20(1), 59–70. DOI: 10.1016/S0143-7496(99)00016-0.
  • Kendall, K.;. Shrinkage and Peel Strength of Adhesive Joints. J. Phys. D: Appl. Phys. 1973, 6(15), 1782. DOI: 10.1088/0022-3727/6/15/304.
  • Adams, R.; Coppendale, J.; Mallick, V.; Al-Hamdan, H. The Effect of Temperature on the Strength of Adhesive Joints. Int. J. Adhes. Adhes. 1992, 12(3), 185–190. DOI: 10.1016/0143-7496(92)90052-W.
  • Allen, K.; Shanahan, M. The Creep Behaviour of Structural Adhesive Joints-i. J. Adhes. 1975, 7(3), 161–174. DOI: 10.1080/00218467508075048.
  • Plausinis, D.; Spelt, J. Application of a New Constant G Load-jig to Creep Crack Growth in Adhesive Joints. Int. J. Adhes. Adhes. 1995, 15(4), 225–232. DOI: 10.1016/0143-7496(96)83703-1.
  • Possart, W.; Jumel, J.; Budzik, M.; Guitard, J.; Shanahan, M. E. Experimental Study of Cohesive Strain Prior to Crack Initiation in Constant Force Single Cantilever Beam Test. J. Adhes. Sci. Technol. 2015, 29(9), 896–909. DOI: 10.1080/01694243.2015.1007554.
  • Barra, G.; Vertuccio, L.; Vietri, U.; Naddeo, C.; Hadavinia, H.; Guadagno, L. Toughening of Epoxy Adhesives by Combined Interaction of Carbon Nanotubes and Silsesquioxanes. Materials. 2017, 10(10), 1131. DOI: 10.3390/ma10101131.
  • Maheri, M.; Adams, R. Determination of Dynamic Shear Modulus of Structural Adhesives in Thick Adherend Shear Test Specimens. Int. J. Adhes. Adhes. 2002, 22(2), 119–127. DOI: 10.1016/S0143-7496(01)00043-4.
  • Petković, G.; Vukoje, M.; Bota, J.; Pasanec Preprotić, S. Enhancement of Polyvinyl Acetate (Pvac) Adhesion Performance by Sio2 and Tio2 Nanoparticles. Coatings. 2019, 9(11), 707. DOI: 10.3390/coatings9110707.
  • de Freitas, S. T.; Sinke, J. Test Method to Assess Interface Adhesion in Composite Bonding. Appl. Adhes. Sci. 2015, 3(9), 1–13. DOI: 10.1186/s40563-015-0033-5.
  • Fernholz, K.;. Bonding of Polymer Matrix Composites. In Advances in Structural Adhesive Bonding; UK: Elsevier, 2010; pp 265–291.
  • Winkler, E.;. The Theory of the Bending of Beams on an Elastic Foundation; Prague, 1867. pp 182.
  • Volkersen, O.;. Die Nietkraftverteilung in Zugbeanspruchten Nietverbindungen Mit Konstanten Laschenquerschnitten. Luftfahrtfor Schung. 1938, 15, 41–47.
  • Biot, M.;. Bending of an Infinite Beam on an Elastic Foundation. J. Appl. Math. Mech. 1922, 2(3), 165–184.
  • Goland, M.;. The Stresses in Cemented Joints. J. Appl. Mech. 1944, 17, 66.
  • Broughton, W.; Mera, R. Project PAJ3 Combined Cyclic Loading and Hostile Environments 1996-1999. Report No. 1, Review of Durability Test Methods and Standards for Assessing Long Term Performance of Adhesive Joints. 1997.
  • Baldan, A.;. Adhesively-bonded Joints and Repairs in Metallic Alloys, Polymers and Composite Materials: Adhesives, Adhesion Theories and Surface Pretreatment. J. Mater. Sci. 2004, 39(1), 1–49. DOI: 10.1023/B:JMSC.0000007726.58758.e4.
  • Habenicht, G.;. Applied Adhesive Bonding, A Practice Guide for Flawless Results. In ISBN, WILEY - VCH verlag GmBH & co, KGaA, Weinheim, 2009; pp 978.
  • Banea, M.; Da Silva, L. F. Adhesively Bonded Joints in Composite Materials: An Overview. Proc. Inst. Mech. Eng. Part L. 2009, 223(1), 1–18. DOI: 10.1243/14644207JMDA219x.
  • DIN EN 2243-1: Aerospace series-Non-metallic materials-Structural adhesives-Test Method Part 1: Single Lap Shear 2005.
  • ASTM D1002-10 – Standard Test Method for Apparent Shear Strength of Single-lap-joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-metal) 2010.
  • ASTM D3163 – Standard Test Method for Determining Strength of Adhesively Bonded Rigid Plastic Lap-Shear Joints in Shear by Tension Loading 2019.
  • ASTM D5868-01(2014) Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding 2014.
  • DVS 1618 (05/2017): Elastic Thick Layer Adhesives Used in Rail Vehicle Applications 2002.
  • AITM 1-0019: Determination of Tensile Lap Shear Strength of Composite Joints 2017.
  • Da Silva, L.; Campilho, R. Design of Adhesively-bonded Composite Joints. In Fatigue and Fracture of Adhesively-Bonded Composite Joints; UK: Woodhead Publishing Limited, 2015; pp 43–71.
  • Budhe, S.; Banea, M.; De Barros, S.; Da Silva, L. An Updated Review of Adhesively Bonded Joints in Composite Materials. Int. J. Adhes. Adhes. 2017, 72, 30–42. DOI: 10.1016/j.ijadhadh.2016.10.010.
  • Jeevi, G.; Nayak, S. K.; Abdul Kader, M. Review on Adhesive Joints and Their Application in Hybrid Composite Structures. J. Adhes. Sci. Technol. 2019, 33(14), 1497–1520. DOI: 10.1080/01694243.2018.1543528.
  • Yang, C.; Huang, H.; Tomblin, J. S.; Oplinger, D. W. Evaluation and Adjustments for ASTM D 5656 Standard Test Method for Thick-adherend Metal Lap-shear Joints for Determination of the Stress-strain Behavior of Adhesives in Shear by Tension Loading. J. Test. Eval. 2001, 29(1), 36–43. DOI: 10.1520/JTE12389J.
  • Kadioglu, F.; Vaughn, L.; Guild, F.; Adams, R. D. Use of the Thick Adherend Shear Test for Shear Stress-strain Measurements of Stiff and Flexible Adhesives. J. Adhes. 2002, 78(5), 355–381. DOI: 10.1080/00218460211818.
  • Dilger, K.;. Selecting the Right Joint Design and Fabrication Techniques. In Advances in Structural Adhesive Bonding; UK: Woodhead Publishing Limited, 2010; pp 295–315.
  • ISO 11003 – 2: Adhesives-determination of Shear Behaviour of Structural Adhesives-part 2: Tensile Test Method Using Thick Adherends 2011.
  • ASTM D3983-98(2019): Standard Test Method for Measuring Strength and Shear Modulus of Nonrigid Adhesives by the Thick-Adherend Tensile-Lap Specimen 2019.
  • Beber, V.; Schneider, B.; Brede, M. Influence of Temperature on the Fatigue Behaviour of a Toughened Epoxy Adhesive. J. Adhes. 2016, 92(7–9), 778–794. DOI: 10.1080/00218464.2015.1114927.
  • De Barros, S.; Kenedi, P.; Ferreira, S.; Budhe, S.; Bernardino, A.; Souza, L. Influence of Mechanical Surface Treatment on Fatigue Life of Bonded Joints. J. Adhes. 2017, 93(8), 599–612. DOI: 10.1080/00218464.2015.1122531.
  • Campilho, R. D.; De Moura, M.; Domingues, J. Modelling Single and Double-lap Repairs on Composite Materials. Compos. Sci. Technol. 2005, 65(13), 1948–1958. DOI: 10.1016/j.compscitech.2005.04.007.
  • Da Silva, L. F.; Rodrigues, T.; Figueiredo, M.; De Moura, M.; Chousal, J. Effect of Adhesive Type and Thickness on the Lap Shear Strength. J. Adhes. 2006, 82(11), 1091–1115. DOI: 10.1080/00218460600948511.
  • ASTM D3528–96 Standard Test Method for Strength Properties of Double Lap Shear Adhesive Joints by Tension Loading 2002.
  • Kendall, K.;. Peel Adhesion of Solid Films-the Surface and Bulk Effects. J. Adhes. 1973, 5(3), 179–202. DOI: 10.1080/00218467308075019.
  • Gent, A. N.; Hamed, G. R. Peel Mechanics. J. Adhes. 1975, 7(2), 91–95. DOI: 10.1080/00218467508075041.
  • Adams, R. D.;. Adhesive Bonding: Science, Technology and Applications; UK: Woodhead Publishing Limited, 2005.
  • ASTM D3167–10(2017) Standard Test Method for Strength Properties of Double Lap Shear Adhesive Joints by Tension Loading 2017.
  • DIN EN 2243-2:2005: Aerospace Series - Non-metallic Materials - Structural Adhesives - Test Method - Part 2: Peel Metal-metal 2006.
  • ASTM D1876: Standard Test Method for Peel Resistance of Adhesives (T-peel Test) 2015.
  • ISO 11339:2010: Adhesives — T-peel Test for Flexible-to-flexible Bonded Assemblies 2010.
  • Holtmannspötter, J.; Czarnecki, J.; Gudladt, H.-J. The Use of Power Ultrasound Energy to Support Interface Formation for Structural Adhesive Bonding. Int. J. Adhes. Adhes. 2010, 30(3), 130–138. DOI: 10.1016/j.ijadhadh.2009.10.002.
  • de Freitas, S. T.; Sinke, J. Adhesion Properties of Bonded Composite-to-aluminium Joints Using Peel Tests. J. Adhes. 2014, 90(5–6), 511–525. DOI: 10.1080/00218464.2013.850424.
  • de Freitas, S. T.; Sinke, J. Failure Analysis of Adhesively-bonded Skin-to-stiffener Joints: Metal–metal Vs. Composite–metal. Eng. Fail. Anal. 2015, 56, 2–13. DOI: 10.1016/j.engfailanal.2015.05.023.
  • ASTM D1781–98 -test Method for Climbing Drum Peel for Adhesives 2012.
  • EN 2243-3:2005: Aerospace Series - Non-metallic Materials - Structural Adhesives - Test Method - Part 3: Peeling Test Metal-honeycomb Core 2005.
  • Griffith, A. The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character 221 1921. 582–593.
  • Griffith, A.;. On the Griffith Energy Criterion for Brittle Fracture. Int. J. Solids Struct. 1967, 3(1), 1–22. DOI: 10.1016/0020-7683(67)90041-8.
  • Goranson, U. Damage Tolerance-facts and Fiction, in: Proc. of the 17th Sympo. of the International Committee on Aeronautical Fatigue, Vol. 1, ICAF, 1993, Stockholm, Sweden, pp. 3–105.
  • Nesterenko, G. Fatigue and Damage Tolerance of Aging Aircraft Structures, in: FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures, Atlanta, GA, Proceedings, Vol. 1, ICAF, 1996, Atlanta, USA, pp. 279.
  • Tong, L.; Steven, G. P. Analysis and Design of Structural Bonded Joints; univ. of Sydney: New South Wales (AU), 1999.
  • Alderliesten, R. C.;. Damage Tolerance of Bonded Aircraft Structures. Int. J. Fatigue. 2009, 31(6), 1024–1030. DOI: 10.1016/j.ijfatigue.2008.05.001.
  • Nagy, K.; Körmendi, K. Use of Renewable Energy Sources in Light of the “New Energy Strategy for Europe 2011–2020”. Appl. Energy. 2012, 96, 393–399. DOI: 10.1016/j.apenergy.2012.02.066.
  • van Kuik, G.; Peinke, J. Long-term Research Challenges in Wind Energy–a Research Agenda by the European Academy of Wind Energy; Cham, Switzerland: Springer, 2009.
  • Leong, M.; Overgaard, L. C.; Thomsen, O. T.; Lund, E.; Daniel, I. M. Investigation of Failure Mechanisms in Gfrp Sandwich Structures with Face Sheet Wrinkle Defects Used for Wind Turbine Blades. Compos. Struct. 2012, 94(2), 768–778. DOI: 10.1016/j.compstruct.2011.09.012.
  • Chen, X.; Zhao, W.; Zhao, X. L.; Xu, J. Z. Preliminary Failure Investigation of a 52.3m Glass/epoxy Composite Wind Turbine Blade. Eng. Fail. Anal. 2014, 44, 345–350. DOI: 10.1016/j.engfailanal.2014.05.024.
  • McGugan, M.; Pereira, G.; Sørensen, B. F.; Toftegaard, H.; Branner, K. Damage Tolerance and Structural Monitoring for Wind Turbine Blades. Philos. Trans. Royal Soc. A. 2015, 373(2035), 20140077. DOI: 10.1098/rsta.2014.0077.
  • Liu, Z.; Zhang, L. A Review of Failure Modes, Condition Monitoring and Fault Diagnosis Methods for Large-scale Wind Turbine Bearings. Measurement. 2020, 149, 107002. DOI: 10.1016/j.measurement.2019.107002.
  • Groth, H.;. A Method to Predict Fracture in an Adhesively Bonded Joint. Int. J. Adhes. Adhes. 1985, 5(1), 19–22. DOI: 10.1016/0143-7496(85)90041-7.
  • Abdel-Wahab, M. M.;. On the Use of Fracture Mechanics in Designing a Single Lap Adhesive Joint. J. Adhes. Sci. Technol. 2000, 14(6), 851–865. DOI: 10.1163/15685610051066758.
  • Kafkalidis, M.; Thouless, M. The Effects of Geometry and Material Properties on the Fracture of Single Lap-shear Joints. Int. J. Solids Struct. 2002, 39(17), 4367–4383. DOI: 10.1016/S0020-7683(02)00344-X.
  • Irwin, G.;. Linear Fracture Mechanics, Fracture Transition, and Fracture Control. Eng. Fract. Mech. 1968, 1(2), 241–257. DOI: 10.1016/0013-7944(68)90001-5.
  • Williams, M.;. Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension. J. Appl. Mech. 1952, 19(4), 526–528. DOI: 10.1115/1.4010553.
  • Zak, A. R.; Williams, M. L. Crack Point Stress Singularities at a Bi-material Interface; california Institute of Technology, USA, 1962.
  • Hild, F.; Roux, S. Digital Image Correlation: From Displacement Measurement to Identification of Elastic Properties – A Review. Strain. 2006, 42(2), 69–80. DOI: 10.1111/j.1475-1305.2006.00258.x.
  • Mokhtarishirazabad, M.; Lopez-Crespo, P.; Moreno, B.; Lopez-Moreno, A.; Zanganeh, M. Evaluation of Crack-tip Fields from DIC Data: A Parametric Study. Int. J. Fatigue. 2016, 89, 11–19. DOI: 10.1016/j.ijfatigue.2016.03.006.
  • Rice, J.;. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. J. Appl. Mech. 1968, 35(2), 379–386. DOI: 10.1115/1.3601206.
  • Dugdale, D.;. Yielding of Steel Sheets Containing Slits. J. Mech. Phys. Solids. 1960, 8(2), 100–104. DOI: 10.1016/0022-5096(60)90013-2.
  • Barenblatt, G. I.;. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Adv. Appl. Mech. 1962, 7(1), 55–129.
  • Zhu, X.-K.; Joyce, J. A. Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization. Eng. Fract. Mech. 2012, 85, 1–46.
  • Ernst, H. A.; Paris, P. C.; Landes, J. D. Estimations on J-integral and Tearing Modulus T from a Single Specimen Test Record. Fracture Mechanics. 1981,  476-502.
  • Anthony, J.; Paris, P. C. Instantaneous Evaluation of J and C. Int. J. Fract. 1988, 38(1), R19–R20. DOI: 10.1007/BF00034281.
  • Jumel, J.; Chauffaille, S.; Budzik, M. K.; Shanahan, M. E.; Guitard, J. Viscoelastic Foundation Analysis of Single Cantilevered Beam (Scb) Test under Stationary Loading. Eur. J. Mech.- A/Solids. 2013, 39, 170–179. DOI: 10.1016/j.euromechsol.2012.10.005.
  • Bueckner, H. F.;. Novel Principle for the Computation of Stress Intensity Factors. Zeitschrift fuer Angewandte Mathematik and Mechanik. 1970, 50(9).
  • Sih, G.;. 2012. Mechanics of Fracture Initiation and Propagation: Surface and Volume Energy Density Applied as Failure Criterion. Zeitschrift fuer Angewandte Mathematik and Mechanik 11.
  • Cotterell, B.; Rice, J. Slightly Curved or Kinked Cracks. Int. J. Fract. 1980, 16(2), 155–169. DOI: 10.1007/BF00012619.
  • Palaniswamy, K.; Knauss, W. G. Propagation of a Crack under General, In-plane Tension. Int. J. Fract.Mech. 1972, 8(1), 114–117. DOI: 10.1007/BF00185207.
  • Davidson, B.; Krüger, R.; König, M. Three-dimensional Analysis of Center-delaminated Unidirectional and Multidirectional Single-leg Bending Specimens. Compos. Sci. Technol. 1995, 54(4), 385–394. DOI: 10.1016/0266-3538(95)00069-0.
  • Møberg, A.; Budzik, M. K.; Jensen, H. M. Crack Front Morphology near the Free Edges in Double and Single Cantilever Beam Fracture Experiments. Eng. Fract. Mech. 2017, 175, 219–234. DOI: 10.1016/j.engfracmech.2017.01.030.
  • Suo, Z.; Hutchinson, J. W. Interface Crack between Two Elastic Layers. Int. J. Fract. 1990, 43(1), 1–18. DOI: 10.1007/BF00018123.
  • Jensen, H. M.; Hutchinson, J. W.; Kyung-Suk, K. Decohesion of a Cut Prestressed Film on a Substrate. Int. J. Solids Struct. 1990, 26(9), 1099–1114. DOI: 10.1016/0020-7683(90)90018-Q.
  • Jensen, H.;. Three-dimensional Numerical Investigation of Brittle Bond Fracture. Int. J. Fract. 2002, 114(2), 153–165. DOI: 10.1023/A:1015066711279.
  • Teixeira, J.; Campilho, R.; Da Silva, F. Numerical Assessment of the Double-cantilever Beam and Tapered Double-cantilever Beam Tests for the G Ic Determination of Adhesive Layers. J. Adhes. 2018, 94(11), 951–973. DOI: 10.1080/00218464.2017.1383905.
  • ASTM D5528 –standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites 2007.
  • Budhe, S.; Banea, M.; De Barros, S.; Da Silva, L. An Updated Review of Adhesively Bonded Joints in Composite Materials. Int. J. Adhes. Adhes. 2017, 72, 30–42. DOI: 10.1016/j.ijadhadh.2016.10.010x.
  • Saseendran, V.; Berggreen, C.; Carlsson, L. A., Fracture Testing of Honeycomb Core Sandwich Composites Using the DCB-UBM Test, in: 20th International Conference on Composite Materials (ICCM20), ICCM20 Secretariat, 2015.
  • Plausinis, D.; Spelt, J. Application of a New Constant G Load-jig to Creep Crack Growth in Adhesive Joints. Int. J. Adhes. Adhes. 1995, 15(4), 225–232. DOI: 10.1016/0143-7496(96)83703-1x.
  • Sørensen, B. F.; Jørgensen, K.; Jacobsen, T. K.; Østergaard, R. C. Dcb-specimen Loaded with Uneven Bending Moments. Int. J. Fract. 2006, 141(1–2), 163–176. DOI: 10.1007/s10704-006-0071-x.
  • Lundsgaard-Larsen, C.; Sørensen, B. F.; Berggreen, C.; Østergaard, R. C. A Modified Dcb Sandwich Specimen for Measuring Mixed-mode Cohesive Laws. Eng. Fract. Mech. 2008, 75(8), 2514–2530. DOI: 10.1016/j.engfracmech.2007.07.020.
  • Lindgaard, E.; Bak, B. L. V. Experimental Characterization of Delamination in Off-axis GFRP Laminates during Mode I Loading. Compos. Struct. 2019, 220, 953–960. DOI: 10.1016/j.compstruct.2019.04.022.
  • Bucci, R. J.; Paris, P. C.; Landes, J. D.; Rice, J. R. „J Integral Estimation Procedures,„ In Fracture Toughness: Part II, ed. H. Corten (West Conshohocken, PA: ASTM International, 1972), 40-69. 10.1520/STP38818S
  • Rice, J.; Paris, P.; Merkle, J. Some Further Results of J-integral Analysis and Estimates. Progress in Flaw Growth and Fracture Toughness Testing; ASTM International, West Conshohocken, PA, 1973.
  • Sørensen, B. F.; Jacobsen, T. K. Determination of Cohesive Laws by the J Integral Approach cohesive Models. Eng. Fract. Mech. 2003, 70(14), 1841–1858. DOI: 10.1016/S0013-7944(03)00127-9.
  • Icardi, U.;. Higher-order Zig-zag Model for Analysis of Thick Composite Beams with Inclusion of Transverse Normal Stress and Sublaminates Approximations. Compos. B Eng. 2001, 32(4), 343–354. DOI: 10.1016/S1359-8368(01)00016-6.
  • Kiss, B.; Szekrényes, A. Fracture and Mode Mixity Analysis of Shear Deformable Composite Beams. Arch. Appl. Mech. 2019, 89(12), 2485–2506. DOI: 10.1007/s00419-019-01591-4.
  • Berry, J.;. Determination of Fracture Surface Energies by the Cleavage Technique. J. Appl. Phys. 1963, 34(1), 62–68. DOI: 10.1063/1.1729091.
  • Blackman, B.; Kinloch, A.; Paraschi, M. The Determination of the Mode Ii Adhesive Fracture Resistance, Giic, of Structural Adhesive Joints: An Effective Crack Length Approach. Eng. Fract. Mech. 2005, 72(6), 877–897. DOI: 10.1016/j.engfracmech.2004.08.007.
  • Bennati, S.; Fisicaro, P.; Valvo, P. S. An Enhanced Beam-theory Model of the Mixed-mode Bending (Mmb) Test—part Ii: Applications and Results. Meccanica. 2013, 48(2), 465–484. DOI: 10.1007/s11012-012-9682-7.
  • Blackman, B.; Kinloch, A.; Paraschi, M. The Determination of the Mode Ii Adhesive Fracture Resistance, Giic, of Structural Adhesive Joints: An Effective Crack Length Approach Prospects in Fracture Papers from a Conference Held to Celebrate the 65th Birthday of Professor J.G. Williams, FRS, FREng Imperial College London, July 2003. Eng. Fract. Mech. 2005, 72(6), 877–897. DOI: 10.1016/j.engfracmech.2004.08.007x.
  • de Morais, A. B.;. Analysis of the Fracture Process Zone and Effective Crack Length in the Adhesively Bonded End-notched Flexure Specimen. J. Adhes. 2019, 95(8), 770–795. DOI: 10.1080/00218464.2018.1440214.
  • Sarrado, C.; Turon, A.; Costa, J.; Renart, J. An Experimental Analysis of the Fracture Behavior of Composite Bonded Joints in Terms of Cohesive Laws. Compos. Part A Appl. Sci. Manuf. 2016, 90, 234–242. DOI: 10.1016/j.compositesa.2016.07.004.
  • Brunner, A.; Blackman, B.; Davies, P. A Status Report on Delamination Resistance Testing of Polymer–matrix Composites. Eng. Fract. Mech. 2008, 75(9), 2779–2794. DOI: 10.1016/j.engfracmech.2007.03.012.
  • Brunner, A.;. Investigating the Performance of Adhesively-bonded Composite Joints: Standards, Test Protocols, and Experimental Design. In Fatigue and Fracture of Adhesively-Bonded Composite Joints; Cambridge, UK: Elsevier, 2015; pp 3–42.
  • Crosley, P.; Ripling, E. A Thick Adherend, Instrumented Double-cantilever-beam Specimen for Measuring Debonding of Adhesive Joints. J. Test. Eval. 1991, 19(1), 24–28. DOI: 10.1520/JTE12525J.
  • Budzik, M.; Jumel, J.; Shanahan, M. Process Zone in the Single Cantilever Beam under Transverse Loading – Part Ii: Experimental. Theor. Appl. Fract. Mech. 2011, 56(1), 13–21. DOI: 10.1016/j.tafmec.2011.09.005.
  • Majumder, M.; Gangopadhyay, T. K.; Chakraborty, A. K.; Dasgupta, K.; Bhattacharya, D. Fibre Bragg Gratings in Structural Health Monitoring—present Status and Applications. Sens. Actuators A Phys. 2008, 147(1), 150–164. DOI: 10.1016/j.sna.2008.04.008.
  • Canal, L. P.; Sarfaraz, R.; Violakis, G.; Botsis, J.; Michaud, V.; Limberger, H. G. Monitoring Strain Gradients in Adhesive Composite Joints by Embedded Fiber Bragg Grating Sensors. Compos. Struct. 2014, 112, 241–247. DOI: 10.1016/j.compstruct.2014.02.014.
  • Manterola, J.; Aguirre, M.; Zurbitu, J.; Renart, J.; Turon, A.; Urresti, I. Using Acoustic Emissions (Ae) to Monitor Mode I Crack Growth in Bonded Joints. Eng. Fract. Mech. 2020, 224, 106778. DOI: 10.1016/j.engfracmech.2019.106778.
  • Comer, A.; Katnam, K.; Stanley, W.; Young, T. Characterising the Behaviour of Composite Single Lap Bonded Joints Using Digital Image Correlation. Int. J. Adhes. Adhes. 2013, 40, 215–223. DOI: 10.1016/j.ijadhadh.2012.08.010.
  • Kumar, R. V.; Bhat, M.; Murthy, C. Evaluation of Kissing Bond in Composite Adhesive Lap Joints Using Digital Image Correlation: Preliminary Studies. Int. J. Adhes. Adhes. 2013, 42, 60–68. DOI: 10.1016/j.ijadhadh.2013.01.004.
  • Khudiakova, A.; Grasser, V.; Blumenthal, C.; Wolfahrt, M.; Pinter, G. Automated Monitoring of the Crack Propagation in Mode I Testing of Thermoplastic Composites by Means of Digital Image Correlation. Polym. Test. 2020, 82, 106304. DOI: 10.1016/j.polymertesting.2019.106304.
  • Blackman, B.; Williams, J. Impact and High Rate Testing of Composites. In Mechanics of Composite Materials and Structures; Berlin, Heidelberg: Springer, 1999; pp 215–224.
  • Blackman, B.; Kinloch, A.; Rodriguez Sanchez, F.; Teo, W.; Williams, J. The Fracture Behaviour of Structural Adhesives under High Rates of Testing Fracture of Polymers, Composites and Adhesives. Eng. Fract. Mech. 2009, 76(18), 2868–2889. DOI: 10.1016/j.engfracmech.2009.07.013.
  • Blackman, B.; Kinloch, A.; Rodriguez-Sanchez, F.; Teo, W. The Fracture Behaviour of Adhesively-bonded Composite Joints: Effects of Rate of Test and Mode of Loading. Int. J. Solids Struct. 2012, 49(13), 1434–1452. DOI: 10.1016/j.ijsolstr.2012.02.022.
  • Machado, J.; Marques, E.; Da Silva, L. F. Adhesives and Adhesive Joints under Impact Loadings: An Overview. J. Adhes. 2018, 94(6), 421–452. DOI: 10.1080/00218464.2017.1282349.
  • Ravindran, S.; Sockalingam, S.; Kodagali, K.; Kidane, A.; Sutton, M. A.; Justusson, B.; Pang, J. Mode-i Behavior of Adhesively Bonded Composite Joints at High Loading Rates. Compos. Sci. Technol. 2020, 198, 108310. DOI: 10.1016/j.compscitech.2020.108310.
  • Pirondi, A.; Nicoletto, G. Fatigue Crack Growth in Bonded Dcb Specimens Fracture and Damage Mechanics. Eng. Fract. Mech. 2004, 71(4–6), 859–871. DOI: 10.1016/S0013-7944(03)00046-8.
  • Shahverdi, M.; Vassilopoulos, A. P.; Keller, T. Experimental Investigation of R-ratio Effects on Fatigue Crack Growth of Adhesively-bonded Pultruded GFRP DCB Joints under CA Loading. Compos. Part A Appl. Sci. Manuf. 2012, 43(10), 1689–1697. DOI: 10.1016/j.compositesa.2011.10.018.
  • Budzik, M. K.; Jumel, J.; Salem, N. B.; Shanahan, M. E. R. Comparison of Cyclic and Monotonic Loading of a Double Cantilever Beam Adhesion Test. J. Adhes. 2014, 90(3), 252–267. DOI: 10.1080/00218464.2013.791620.
  • Harris, J.; Fay, P. Fatigue Life Evaluation of Structural Adhesives for Automotive Applications. Int. J. Adhes. Adhes. 1992, 12(1), 9–18. DOI: 10.1016/0143-7496(92)90003-E.
  • Khoramishad, H.; Crocombe, A.; Katnam, K.; Ashcroft, I. A Generalised Damage Model for Constant Amplitude Fatigue Loading of Adhesively Bonded Joints. Int. J. Adhes. Adhes. 2010, 30(6), 513–521. DOI: 10.1016/j.ijadhadh.2010.05.003.
  • Vassilopoulos, A. P.;. Fatigue and Fracture of Adhesively-bonded Composite Joints; Cambridge, UK: Woodhead Publishing, 2014.
  • Mai, Y.;. Cracking Stability in Tapered Dcb Test Pieces. Int. J. Fract. 1974, 10(2), 292–295. Cambridge, UK. DOI: 10.1007/BF00113939.
  • Blackman, B.; Hadavinia, H.; Kinloch, A.; Paraschi, M.; Williams, J. The Calculation of Adhesive Fracture Energies in Mode I: Revisiting the Tapered Double Cantilever Beam (Tdcb) Test. Eng. Fract. Mech. 2003, 70(2), 233–248. DOI: 10.1016/S0013-7944(02)00031-0.
  • Jethwa, J. K.; Kinloch, A. J. The Fatigue and Durability Behaviour of Automotive Adhesives. Part I: Fracture Mechanics Tests. J. Adhes. 1997, 61(1–4), 71–95. DOI: 10.1080/00218469708010517.
  • Blackman, B.; Kinloch, A.; Paraschi, M.; Teo, W. Measuring the Mode I Adhesive Fracture Energy, Gic, of Structural Adhesive Joints: The Results of an International Round-robin. Int. J. Adhes. Adhes. 2003, 23(4), 293–305. DOI: 10.1016/S0143-7496(03)00047-2.
  • BS7991: Determination of the Mode I Adhesive Fracture Energy GIC of Structure Adhesives Using the Double Cantilever Beam (DCB) and Tapered Double Cantilever Beam (TDCB) Specimens 2001.
  • ISO 25217: 2009: Adhesives–Determination of the Mode 1 Adhesive Fracture Energy of Structural Adhesive Joints Using Double Cantilever Beam and Tapered Double Cantilever Beam Specimens 2009.
  • Adams, R.; Cowap, J.; Farquharson, G.; Margary, G.; Vaughn, D. The Relative Merits of the Boeing Wedge Test and the Double Cantilever Beam Test for Assessing the Durability of Adhesively Bonded Joints, with Particular Reference to the Use of Fracture Mechanics Special Issue on Durability of Adhesive Joints. Int. J. Adhes. Adhes. 2009, 29(6), 609–620. DOI: 10.1016/j.ijadhadh.2009.02.010.
  • Sargent, J.;. Durability Studies for Aerospace Applications Using Peel and Wedge Tests. Int. J. Adhes. Adhes. 2005, 25(3), 247–256. DOI: 10.1016/j.ijadhadh.2004.07.005.
  • Cognard, J.;. Use of the Wedge Test to Estimate the Lifetime of an Adhesive Joint in an Aggressive Environment. Int. J. Adhes. Adhes. 1986, 6(4), 215–220. DOI: 10.1016/0143-7496(86)90008-4.
  • ASTM D3762-03. Standard Test Method for Adhesive-Bonded Surface Durability of Aluminum (Wedge Test) 2010.
  • Adams, D. O.; DeVries, K. L.; Child, C., Durability of Adhesively Bonded Joints for Aircraft Structures, FAA Jt Adv Mater Struct Cent Excell Tech Rev Meet 22 2012, USA.
  • Budzik, M.; Jumel, J.; Shanahan, M. An in Situ Technique for the Assessment of Adhesive Properties of a Joint under Load. Int. J. Fract. 2011, 171(2), 111–124. DOI: 10.1007/s10704-011-9630-x.
  • Manterola, J.; Zurbitu, J.; Renart, J.; Turon, A.; Urresti, I. Durability Study of Flexible Bonded Joints: The Effect of Sustained Loads in Mode I Fracture Tests. Polym. Test. 2020, 88, 106570. DOI: 10.1016/j.polymertesting.2020.106570.
  • ISO 11343:2019: Adhesives — Determination of Dynamic Resistance to Cleavage of High-strength Adhesive Bonds under Impact Wedge Conditions — Wedge Impact Method 2019.
  • Taylor, A. The Impact and Durability Performance of Adhesively-bonded Metal Joints, Ph.D. thesis, Imperial College of Science. 1997.
  • Taylor, A.; Blackman, B.; Kinloch, A.; Wang, Y., Impact Testing of Adhesive Joints, MTS Adhesive Project 2 1996.
  • Blackman, B.; Kinloch, A.; Taylor, A.; Wang., Y. The Impact Wedge-peel Performance of Structural Adhesives. J. Mater. Sci. 2000, 35(8), 1867–1884. DOI: 10.1023/A:1004793730352.
  • Davies, P.; Sims, G.; Blackman, B.; Brunner, A.; Kageyama, K.; Hojo, M.; Tanaka, K.; Murri, G.; Rousseau, C.; Gieseke, B.; et al. Comparison of Test Configurations for Determination of Mode Ii Interlaminar Fracture Toughness Results from International Collaborative Test Programme. Plast., Rubber Compos. 1999, 28(9), 432–437. DOI: 10.1179/146580199101540600.
  • Blackman, B.; Brunner, A.; Williams, J. Mode Ii Fracture Testing of Composites: A New Look at an Old Problem Fracture of Polymers, Composites and Adhesives. Eng. Fract. Mech. 2006, 73(16), 2443–2455. DOI: 10.1016/j.engfracmech.2006.05.022.
  • Chaves, F. J. P.; Da Silva, L. F. M.; de Moura, M. F. S. F.; Dillard, D. A.; Esteves, V. H. C. Fracture Mechanics Tests in Adhesively Bonded Joints: A Literature Review. J. Adhes. 2014, 90(12), 955–992. DOI: 10.1080/00218464.2013.859075.
  • de Moura, M.; Campilho, R.; Gonçalves, J. Pure Mode Ii Fracture Characterization of Composite Bonded Joints. Int. J. Solids Struct. 2009, 46(6), 1589–1595. DOI: 10.1016/j.ijsolstr.2008.12.001.
  • Wang, H.; Vu-Khanh, T. Use of End-loaded-split (Els) Test to Study Stable Fracture Behaviour of Composites under Mode Ii Loading. Compos. Struct. 1996, 36(1–2), 71–79. DOI: 10.1016/S0263-8223(96)00066-9.
  • Da Silva, L. F. M.; de Magalhães, F. A. C. R. G.; Chaves, F. J. P.; de Moura, M. F. S. F. Mode Ii Fracture Toughness of a Brittle and a Ductile Adhesive as a Function of the Adhesive Thickness. J. Adhes. 2010, 86(9), 891–905. DOI: 10.1080/00218464.2010.506155.
  • Toolabi, M.; Blackman, B. Guidelines for Selecting the Dimensions of Adhesively Bonded End-loaded Split Joints: An Approach Based on Numerical Cohesive Zone Length. Eng. Fract. Mech. 2018, 203, 250–265. 8th ESIS TC4 International Conference- Fracture of Polymers, Composites and Adhesives DOI: 10.1016/j.engfracmech.2018.05.019.
  • Jumel, J.; Budzik, M. Inverse End-loaded-split Test Analysis Effect of Small Scale Yielding. Theor. Appl. Fract. Mech. 2018, 96, 775–789. DOI: 10.1016/j.tafmec.2017.11.005.
  • de Oliveira, B.; Campilho, R.; Silva, F.; Rocha, R. Comparison between the Enf and 4enf Fracture Characterization Tests to Evaluate Giic of Bonded Aluminium Joints. J. Adhes. 2018, 94(11), 910–931. DOI: 10.1080/00218464.2017.1387056.
  • Alfredsson, K.;. On the Instantaneous Energy Release Rate of the End-notch Flexure Adhesive Joint Specimen. Int. J. Solids Struct. 2004, 41(16–17), 4787–4807. DOI: 10.1016/j.ijsolstr.2004.03.008.
  • Alfredsson, K.; Stigh, U. Stability of Beam-like Fracture Mechanics Specimens. Eng. Fract. Mech. 2012, 89, 98–113. DOI: 10.1016/j.engfracmech.2012.04.027.
  • Bing, Q.; Sun, C. Effect of Compressive Transverse Normal Stress on Mode Ii Fracture Toughness in Polymeric Composites. Int. J. Fract. 2007, 145(2), 89–97. DOI: 10.1007/s10704-007-9103-4.
  • Budzik, M.; Jumel, J.; Ben Salem, N.; Shanahan, M. Instrumented End Notched Flexure – Crack Propagation and Process Zone Monitoring Part Ii: Data Reduction and Experimental. Int. J. Solids Struct. 2013, 50(2), 310–319. DOI: 10.1016/j.ijsolstr.2012.08.030.
  • Davies, P.;. Influence of Enf Specimen Geometry and Friction on the Mode Ii Delamination Resistance of Carbon/peek. J. Thermoplast. Compos. Mater. 1997, 10(4), 353–361. DOI: 10.1177/089270579701000404.
  • Qiao, P.; Wang, J.; Davalos, J. F. Analysis of Tapered Enf Specimen and Characterization of Bonded Interface Fracture under Mode-ii Loading. Int. J. Solids Struct. 2003, 40(8), 1865–1884. DOI: 10.1016/S0020-7683(03)00031-3.
  • Pérez-Galmés, M.; Renart, J.; Sarrado, C.; Rodríguez-Bellido, A.; Costa, J. A Data Reduction Method Based on the J-integral to Obtain the Interlaminar Fracture Toughness in A Mode Ii End-loaded Split (Els) Test. Compos. Part A Appl. Sci. Manuf. 2016, 90, 670–677. DOI: 10.1016/j.compositesa.2016.08.020.
  • Agarwall, B.; Giare, G. Fracture Toughness of Short Fibre Composites in Modes Ii and Iii. Eng. Fract. Mech. 1981, 15(1–2), 219–230. DOI: 10.1016/0013-7944(81)90119-3.
  • Lee, S.;. An Edge Crack Torsion Method for Mode Iii Delamination Fracture Testing. Technol. Res. 1993, 15(3), 193–201.
  • Pennas, D.; Cantwell, W. J.; Compston, P. The Influence of Loading Rate on the Mode Iii Fracture Properties of Adhesively Bonded Composites. J. Reinf. Plast. Compos. 2009, 28(16), 1999–2012. DOI: 10.1177/0731684408090716.
  • Ripling, E. J.; Santner, J. S.; Crosley, P. B. Fracture Toughness of Composite Adherend Adhesive Joints under Mixed Mode I and Iii Loading. J. Mater. Sci. 1983, 18(8), 2274–2282. DOI: 10.1007/BF00541830.
  • Donaldson, S.;. Mode Iii Interlaminar Fracture Characterization of Composite Materials. Compos. Sci. Technol. 1988, 32(3), 225–249. DOI: 10.1016/0266-3538(88)90022-X.
  • Szekrenyes, A.;. Improved Analysis of the Modified Split-cantilever Beam for Mode-iii Fracture. Int. J. Mech. Sci. 2009, 51(9–10), 682–693. DOI: 10.1016/j.ijmecsci.2009.07.005.
  • Cricri, G.; Perrella, M.; Sessa, S.; Valoroso, N. A Novel Fixture for Measuring Mode III Toughness of Bonded Assemblies. Eng. Fract. Mech. 2015, 138, 1–18. DOI: 10.1016/j.engfracmech.2015.03.019.
  • Cricri, G.; Perrella, M. Investigation of Mode III Fracture Behaviour in Bonded Pultruded GFRP Composite Joints. Compos. B Eng. 2017, 112, 176–184. DOI: 10.1016/j.compositesb.2016.12.052.
  • Pereira, A.; de Morais, A.; de Moura, M. Design and Analysis of a New Six-point Edge Crack Torsion (6ECT) Specimen for Mode III Interlaminar Fracture Characterisation. Compos. Part A Appl. Sci. Manuf. 2011, 42(2), 131–139. DOI: 10.1016/j.compositesa.2010.10.013.
  • Jiang, Z.; Wan, S.; Zhong, Z.; Li, S.; Shen, K. Effect of Curved Delamination Front on mode-I Fracture Toughness of Adhesively Bonded Joints. Eng. Fract. Mech. 2015, 138, 73–91. DOI: 10.1016/j.engfracmech.2015.03.020.
  • Liu, Y.; Lemanski, S.; Zhang, X. Parametric Study of Size, Curvature and Free Edge Effects on the Predicted Strength of Bonded Composite Joints. Compos. Struct. 2018, 202, 364–373. special issue dedicated to Ian Marshall DOI: 10.1016/j.compstruct.2018.02.017.
  • Hutchinson, J.; Suo, Z. Mixed Mode Cracking in Layered Materials. In Advances in Applied Mechanics, Hutchinson, J. W., Wu, T. Y., Eds.; Cambridge, UK: Elsevier: 1991; Vol. 29, pp 63–191.
  • Thouless, M. D.; Jensen, H. M. Elastic Fracture Mechanics of the Peel-test Geometry. J. Adhes. 1992, 38(3–4), 185–197. DOI: 10.1080/00218469208030454.
  • Dillard, D. A.; Singh, H. K.; Pohlit, D. J.; Starbuck, J. M. Observations of Decreased Fracture Toughness for Mixed Mode Fracture Testing of Adhesively Bonded Joints. J. Adhes. Sci. Technol. 2009, 23(10–11), 1515–1530. DOI: 10.1163/156856109X452701.
  • Ducept, F.; Gamby, D.; Davies, P. A Mixed-mode Failure Criterion Derived from Tests on Symmetric and Asymmetric Specimens. Compos. Sci. Technol. 1999, 59(4), 609–619. DOI: 10.1016/S0266-3538(98)00105-5.
  • Datla, N.; Ulicny, J.; Carlson, B.; Papini, M.; Spelt, J. Mixed-mode Fatigue Behavior of Degraded Toughened Epoxy Adhesive Joints. Int. J. Adhes. Adhes. 2011, 31(2), 88–96. DOI: 10.1016/j.ijadhadh.2010.11.007.
  • Radcliff, J.; Reeder, J. Sizing a Single Cantilever Beam Specimen for Characterizing Facesheet–core Debonding in Sandwich Structure. J. Compos. Mater. 2011, 45(25), 2669–2684. DOI: 10.1177/0021998311401116.
  • Leseman, Z. C.; Carlson, S. P.; Mackin, T. J. Experimental Measurements of the Strain Energy Release Rate for Stiction-failed Microcantilevers Using a Single-cantilever Beam Peel Test. J. Microelectromech. Syst. 2007, 16(1), 38–43. DOI: 10.1109/JMEMS.2006.883570.
  • Shin, D.; Lee, J.; Yoon, C.; Lee, G.; Hong, J.; Kim, N. Development of Single Cantilever Beam Method to Measure the Adhesion of Thin Film Adhesive on Silicon Chip. Eng. Fract. Mech. 2015, 133, 179–190. DOI: 10.1016/j.engfracmech.2014.10.004.
  • Vanderkley, P. Mode I-mode Ii Delamination Fracture Toughness of a Unidirectional Graphite/epoxy Composite. Msc Dissertation, Ph.D. thesis, Texas AM University. 1981.
  • Bennati, S.; Fisicaro, P.; Valvo, P. An Enhanced Beam-theory Model of the Mixed-mode Bending (Mmb) Test—part I: Literature Review and Mechanical Model. Meccanica. 2013, 48(2), 443–462. DOI: 10.1007/s11012-012-9686-3.
  • Shahverdi, M.; Vassilopoulos, A. P.; Keller, T. Mixed-Mode I and II Fracture Behavior of Asymmetric Adhesively-bonded Pultruded Composite Joints. Eng. Fract. Mech. 2014, 115, 43–59. DOI: 10.1016/j.engfracmech.2013.11.014.
  • Panettieri, E.; Leclerc, G.; Jumel, J.; Guitard, J. Mixed-mode Crack Propagation Tests of Composite Bonded Joints Using a Dual-actuator Load Frame – Constant and Variable Gii/gi Conditions. Eng. Fract. Mech. 2018, 202, 471–486. DOI: 10.1016/j.engfracmech.2018.09.015.
  • Akhavan-Safar, A.; Ayatollahi, M.; Safaei, S.; Da Silva, L. Mixed Mode I/iii Fracture Behavior of Adhesive Joints. Int. J. Solids Struct. 2020, 199, 109–119. DOI: 10.1016/j.ijsolstr.2020.05.007.
  • Loh, L.; Marzi, S. An Out-of-plane Loaded Double Cantilever Beam (ODCB) Test to Measure the Critical Energy Release Rate in Mode III of Adhesive Joints. Int. J. Adhes. Adhes. 2018, 83, 24–30. DOI: 10.1016/j.ijadhadh.2018.02.021.
  • Loh, L.; Marzi, S. A Novel Experimental Methodology to Identify Fracture Envelopes and Cohesive Laws in Mixed-mode I and III. Eng. Fract. Mech. 2019, 214, 304–319. DOI: 10.1016/j.engfracmech.2019.03.011.
  • Dhondt, G.; Chergui, A.; Buchholz, F.-G. Computational Fracture Analysis of Different Specimens regarding 3d and Mode Coupling Effects. Eng. Fract. Mech. 2001, 68(4), 383–401. DOI: 10.1016/S0013-7944(00)00104-1.
  • Buchholz, F.-G.; Chergui, A.; Richard, H. Fracture Analyses and Experimental Results of Crack Growth under General Mixed Mode Loading Conditions Fracture and Damage Mechanics. Eng. Fract. Mech. 2004, 71(4–6), 455–468. DOI: 10.1016/S0013-7944(03)00015-8.
  • Szekrényes, A.;. Delamination Fracture Analysis in the Gii–giii Plane Using Prestressed Transparent Composite Beams. Int. J. Solids Struct. 2007, 44(10), 3359–3378. DOI: 10.1016/j.ijsolstr.2006.09.029.
  • de Morais, A.; Pereira, A. Mixed Mode II+III Interlaminar Fracture of Carbon/epoxy Laminates. Compos. Sci. Technol. 2008, 68(9), 2022–2027. DOI: 10.1016/j.compscitech.2008.02.023.
  • Davidson, B. D.; Sediles, F. O. Mixed-mode I–II–III Delamination Toughness Determination via a Shear–torsion-bending Test. Compos. Part A Appl. Sci. Manuf. 2011, 42(6), 589–603. DOI: 10.1016/j.compositesa.2011.01.018.
  • Floros, I.; Tserpes, K.; Löbel, T. Mode-I, mode-II and Mixed-mode I+II Fracture Behavior of Composite Bonded Joints: Experimental Characterization and Numerical Simulation. Compos. B Eng. 2015, 78, 459–468.
  • Fernandes, R. L.; de Freitas, S. T.; Budzik, M. K.; Poulis, J. A.; Benedictus, R. From Thin to Extra-thick Adhesive Layer Thicknesses: Fracture of Bonded Joints under Mode I Loading Conditions. Eng. Fract. Mech. 2019, 218, 106607. DOI: 10.1016/j.engfracmech.2019.106607.
  • Mishnaevsky, L.; Branner, K.; Petersen, H. N.; Beauson, J.; McGugan, M.; Sørensen, B. F. Materials for Wind Turbine Blades: An Overview. Materials. 2017, 10(11), 1285. DOI: 10.3390/ma10111285.
  • Tada, H.; Paris, P. C.; Irwin, G. R. The Stress Analysis of Cracks. In Handbook, Del Research Corporation; 1973; Vol. 34, ASME, NY, USA.
  • Orowan, E.;. Fracture and Strength of Solids. Rep. Prog. Phys. 1949, 12(1), 185. DOI: 10.1088/0034-4885/12/1/309.
  • Lawn, B.;. Fracture of Brittle Solids; UK: Cambridge university press, 1993.
  • Williams, J.;. Root Rotation and Plastic Work Effects in the Peel Test. J. Adhes. 1993, 41(1–4), 225–239. DOI: 10.1080/00218469308026564.
  • Cotterell, B.; Hbaieb, K.; Williams, J.; Hadavinia, H.; Tropsa, V. The Root Rotation in Double Cantilever Beam and Peel Tests. Mech. Mater. 2006, 38(7), 571–584. DOI: 10.1016/j.mechmat.2005.11.001.
  • Škec, L.; Alfano, G.; Jelenić, G. Enhanced Simple Beam Theory for Characterising Mode-i Fracture Resistance via a Double Cantilever Beam Test. Compos. B Eng. 2019, 167, 250–262. DOI: 10.1016/j.compositesb.2018.11.099.
  • Kanninen, M.;. An Augmented Double Cantilever Beam Model for Studying Crack Propagation and Arrest. Int. J. Fract. 1973, 9(1), 83–92.
  • Budzik, M.; Jumel, J.; Imielińska, K.; Shanahan, M. Effect of Adhesive Compliance in the Assessment of Soft Adhesives with the Wedge Test. J. Adhes. Sci. Technol. 2011, 25(1–3), 131–149. DOI: 10.1163/016942410X501133.
  • Penado, F.;. A Closed Form Solution for the Energy Release Rate of the Double Cantilever Beam Specimen with an Adhesive Layer. J. Compos. Mater. 1993, 27(4), 383–407. DOI: 10.1177/002199839302700403.
  • Kondo, K.;. Analysis of Double Cantilever Beam Specimen. Adv. Compos. Mater. 1995, 4(4), 355–366. DOI: 10.1163/156855195X00203.
  • Mostovoy, S.; Ripling, E. Fracture Toughness of an Epoxy System. J. Appl. Polym. Sci. 1966, 10(9), 1351–1371. DOI: 10.1002/app.1966.070100913.
  • Mostovoy, S.; Ripling, E. The Fracture Toughness and Stress Corrosion Cracking Characteristics of an Anhydride-hardened Epoxy Adhesive. J. Appl. Polym. Sci. 1971, 15(3), 641–659. DOI: 10.1002/app.1971.070150311.
  • Kinloch, A.; Shaw, S. A Fracture Mechanics Approach to the Failure of Structural Joints, Developments in Adhesives- 2; Applied Science Publishers: (A 82-28576 13-39) London, 1981; Vol. 1981. pp 83–124
  • Mall, S.; Ramamurthy, G. Effect of Bond Thickness on Fracture and Fatigue Strength of Adhesively Bonded Composite Joints. Int. J. Adhes. Adhes. 1989, 9(1), 33–37. DOI: 10.1016/0143-7496(89)90144-9.
  • Kawashita, L.; Kinloch, A.; Moore, D.; Williams, J. The Influence of Bond Line Thickness and Peel Arm Thickness on Adhesive Fracture Toughness of Rubber Toughened Epoxy–aluminium Alloy Laminates. Int. J. Adhes. Adhes. 2008, 28(4–5), 199–210. DOI: 10.1016/j.ijadhadh.2007.05.005.
  • Davies, P.; Sohier, L.; Cognard, J.-Y.; Bourmaud, A.; Choqueuse, D.; Rinnert, E.; Créac’hcadec, R. Influence of Adhesive Bond Line Thickness on Joint Strength. Int. J. Adhes. Adhes. 2009, 29(7), 724–736. DOI: 10.1016/j.ijadhadh.2009.03.002.
  • Arenas, J. M.; Narbón, J. J.; Ala, C. Optimum Adhesive Thickness in Structural Adhesives Joints Using Statistical Techniques Based on Weibull Distribution. Int. J. Adhes. Adhes. 2010, 30(3), 160–165. DOI: 10.1016/j.ijadhadh.2009.12.003.
  • Budzik, M.; Jumel, J.; Salem, N. B.; Shanahan, M. Instrumented End Notched Flexure–crack Propagation and Process Zone Monitoring Part Ii: Data Reduction and Experimental. Int. J. Solids Struct. 2013, 50(2), 310–319. DOI: 10.1016/j.ijsolstr.2012.08.030x.
  • Ranade, S. R.; Guan, Y.; Ohanehi, D. C.; Dillard, J. G.; Batra, R. C.; Dillard, D. A. A Tapered Bondline Thickness Double Cantilever Beam (Dcb) Specimen Geometry for Combinatorial Fracture Studies of Adhesive Bonds. Int. J. Adhes. Adhes. 2014, 55, 155–160. DOI: 10.1016/j.ijadhadh.2014.08.006.
  • Lee, M.; Wang, C. H.; Yeo, E. Effects of Adherend Thickness and Taper on Adhesive Bond Strength Measured by Portable Pull-off Tests. Int. J. Adhes. Adhes. 2013, 44, 259–268.
  • Ji, G.; Ouyang, Z.; Li, G. On the Interfacial Constitutive Laws of Mixed Mode Fracture with Various Adhesive Thicknesses. Mech. Mater. 2012, 47, 24–32. DOI: 10.1016/j.mechmat.2012.01.002.
  • Chen, B.; Dillard, D. A. Numerical Analysis of Directionally Unstable Crack Propagation in Adhesively Bonded Joints. Int. J. Solids Struct. 2001, 38(38–39), 6907–6924. DOI: 10.1016/S0020-7683(01)00006-3.
  • Akisanya, A. R.; Meng, C. Initiation of Fracture at the Interface Corner of Bi-material Joints. J. Mech. Phys. Solids. 2003, 51(1), 27–46. DOI: 10.1016/S0022-5096(02)00076-5.
  • Kotousov, A.; Lew, Y. T. Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates of Arbitrary Thickness in Extension. Int. J. Solids Struct. 2006, 43(17), 5100–5109.
  • Reedy Jr., E.; Guess, T. Interface Corner Failure Analysis of Joint Strength: Effect of Adherend Stiffness. Int. J. Fract. 1997, 88(4), 305–314. DOI: 10.1023/A:1007436110715.
  • Pardoen, T.; Ferracin, T.; Landis, C.; Delannay, F. Constraint Effects in Adhesive Joint Fracture. J. Mech. Phys. Solids. 2005, 53(9), 1951–1983. DOI: 10.1016/j.jmps.2005.04.009.
  • Van Loock, F.; Thouless, M.; Fleck, N. Tensile Fracture of an Adhesive Joint: The Role of Crack Length and of Material Mismatch. J. Mech. Phys. Solids. 2019, 130, 330–348. DOI: 10.1016/j.jmps.2019.06.004.
  • Fernandes, R. L.; de Freitas, S. T.; Budzik, M. K.; Poulis, J. A.; Benedictus, R. Role of Adherend Material on the Fracture of Bi-material Composite Bonded Joints. Compos. Struct. 2020, 252, 112643. DOI: 10.1016/j.compstruct.2020.112643.
  • Lopes Fernandes, R.; Budzik, M. K.; Benedictus, R.; de Freitas, S. T. Multi-material Adhesive Joints with Thick Bond-lines: Crack Onset and Crack Deflection. Compos. Struct. 2021, 266, 113687. DOI: 10.1016/j.compstruct.2021.113687.
  • Ala, C.; Arenas, J. M.; Suárez, J. C.; Ocana, R.; Narbón, J. J. Mode Ii Fracture Energy in the Adhesive Bonding of Dissimilar Substrates: Carbon Fibre Composite to Aluminium Joints. J. Adhes. Sci. Technol. 2013, 27(22), 2480–2494. DOI: 10.1080/01694243.2013.787516.
  • Wang, W.; Lopes Fernandes, R.; De Freitas, S. T.; Zarouchas, D.; Benedictus, R. How Pure Mode I Can Be Obtained in Bi-material Bonded DCB Joints: A Longitudinal Strain-based Criterion. Compos. B Eng. 2018, 153, 137–148. DOI: 10.1016/j.compositesb.2018.07.033.
  • Dempsey, J.; Sinclair, G. On the Singular Behavior at the Vertex of a Bi-material Wedge. J. Elast. 1981, 11(3), 317–327. DOI: 10.1007/BF00041942.
  • Akisanya, A. R.; Fleck, N. A. Brittle Fracture of Adhesive Joints. Int. J. Fract. 1992, 58(2), 93–114. DOI: 10.1007/BF00019971.
  • Arouche, M. M.; Wang, W.; de Freitas, S. T.; De Barros, S. Strain-based Methodology for Mixed-mode I+ii Fracture: A New Partitioning Method for Bi-material Adhesively Bonded Joints. J. Adhes. 2019, 95(5–7), 385–404. DOI: 10.1080/00218464.2019.1565756.
  • Guo, R.; Morishima, S. Numerical Analysis and Experiment of Composite Sandwich T-joints Subjected to Pulling Load. Compos. Struct. 2011, 94(1), 229–238. DOI: 10.1016/j.compstruct.2011.06.022.
  • de Freitas, S. T.; Sinke, J. Failure Analysis of Adhesively-bonded Skin-to-stiffener Joints: Metal–metal Vs. Composite–metal. 2015, 56, 2–13. the Sixth International Conference on Engineering Failure Analysis DOI: 10.1016/j.engfailanal.2015.05.023x.
  • Carneiro, M. A. S.; Campilho, R. D. S. G. Analysis of Adhesively-bonded T-joints by Experimentation and Cohesive Zone Models. J. Adhes. Sci. Technol. 2017, 31(18), 1998–2014. DOI: 10.1080/01694243.2017.1291320.
  • Domingues, N.; Campilho, R.; Carbas, R.; Da Silva, L. Experimental and Numerical Failure Analysis of Aluminium/composite Single-l Joints. Int. J. Adhes. Adhes. 2016, 64, 86–96. DOI: 10.1016/j.ijadhadh.2015.10.011.
  • Greenhalgh, E.; Garcia, M. H. Fracture Mechanisms and Failure Processes at Stiffener Run-outs in Polymer Matrix Composite Stiffened Elements. Compos. Part A Appl. Sci. Manuf. 2004, 35(12), 1447–1458. DOI: 10.1016/j.compositesa.2004.05.006.
  • Reinoso, J.; Blázquez, A.; Estefani, A.; París, F.; Cañas, J. A Composite Runout Specimen Subjected to Tension–compression Loading Conditions: Experimental and Global–local Finite Element Analysis. Compos. Struct. 2013, 101, 274–289. DOI: 10.1016/j.compstruct.2012.12.056.
  • Reinoso, J.; Blázquez, A.; Távara, L.; París, F.; Arellano, C. Damage Tolerance of Composite Runout Panels under Tensile Loading. Compos. B Eng. 2016, 96, 79–93. DOI: 10.1016/j.compositesb.2016.03.083.
  • Cardoso, J. V.; Gamboa, P. V.; Silva, A. P. Effect of Surface Pre-treatment on the Behaviour of Adhesively-bonded CFRP T-joints. Eng. Fail. Anal. 2019, 104, 1188–1202. DOI: 10.1016/j.engfailanal.2019.05.043.
  • Greenhalgh, E.; Meeks, C.; Clarke, A.; Thatcher, J. The Effect of Defects on the Performance of Post-buckled Cfrp Stringer-stiffened Panels. Compos. Part A Appl. Sci. Manuf. 2003, 34(7), 623–633. DOI: 10.1016/S1359-835X(03)00098-8.
  • Meeks, C.; Greenhalgh, E.; Falzon, B. G. Stiffener Debonding Mechanisms in Post-buckled Cfrp Aerospace Panels. Compos. Part A Appl. Sci. Manuf. 2005, 36(7), 934–946. DOI: 10.1016/j.compositesa.2004.12.003.
  • Matthews, F.; Kilty, P.; Godwin, E. A Review of the Strength of Joints in Fibre-reinforced Plastics. Part 2. Adhesively Bonded Joints. Composites. 1982, 13(1), 29–37. DOI: 10.1016/0010-4361(82)90168-9.
  • Wingfield, J.;. Treatment of Composite Surfaces for Adhesive Bonding. Int. J. Adhes. Adhes. 1993, 13(3), 151–156. DOI: 10.1016/0143-7496(93)90036-9.
  • Reis, P.; Ferreira, J.; Richardson, M. Effect of the Surface Preparation on PP Reinforced Glass Fiber Adhesive Lap Joints Strength. J. Thermoplast. Compos. Mater. 2012, 25(1), 3–13. DOI: 10.1177/0892705711408161.
  • Tornow, C.; Schlag, M.; Lima, L. C. M.; Stübing, D.; Hoffmann, M.; Noeske, P.-L. M.; Brune, K.; Dieckhoff, S. Quality Assurance Concepts for Adhesive Bonding of Composite Aircraft Structures–characterisation of Adherent Surfaces by Extended Ndt. J. Adhes. Sci. Technol. 2015, 29(21), 2281–2294. DOI: 10.1080/01694243.2015.1055062.
  • Molitor, P.; Barron, V.; Young, T. Surface Treatment of Titanium for Adhesive Bonding to Polymer Composites: A Review. Int. J. Adhes. Adhes. 2001, 21(2), 129–136. DOI: 10.1016/S0143-7496(00)00044-0.
  • Marques, A. C.; Mocanu, A.; Tomić, N. Z.; Balos, S.; Stammen, E.; Lundevall, A.; Abrahami, S. T.; Günther, R.; de Kok, J. M.; de Freitas, S. T. Review on Adhesives and Surface Treatments for Structural Applications: Recent Developments on Sustainability and Implementation for Metal and Composite Substrates. Materials. 2020, 13(24), 5590. DOI: 10.3390/ma13245590.
  • Critchlow, G.; Brewis, D. Review of Surface Pretreatments for Aluminium Alloys. Int. J. Adhes. Adhes. 1996, 16(4), 255–275. DOI: 10.1016/S0143-7496(96)00014-0.
  • Dieckhoff, S.; Standfuß, J.; Pap, J.-S.; Klotzbach, A.; Zimmermann, F.; Burchardt, M.; Regula, C.; Wilken, R.; Apmann, H.; Fortkamp, K.; et al. New Concepts for Cutting, Surface Treatment and Forming of Aluminium Sheets Used for Fibre-metal Laminate Manufacturing. CEAS Aeronaut. J. 2019, 10(2), 419–429.
  • Falzon, B.; Stevens, K.; Davies, G. Postbuckling Behaviour of a Blade-stiffened Composite Panel Loaded in Uniaxial Compression. Compos. Part A Appl. Sci. Manuf. 2000, 31(5), 459–468. DOI: 10.1016/S1359-835X(99)00085-8.
  • Zhan, X.; Gu, C.; Wu, H.; Liu, H.; Chen, J.; Chen, J.; Wei, Y. Experimental and Numerical Analysis on the Strength of 2060 Al–li Alloy Adhesively Bonded T Joints. Int. J. Adhes. Adhes. 2016, 65, 79–87. DOI: 10.1016/j.ijadhadh.2015.11.010.
  • Krueger, R.; Minguet, P. J. Analysis of Composite Skin–stiffener Debond Specimens Using a Shell/3d Modeling Technique. Compos. Struct. 2007, 81(1), 41–59. DOI: 10.1016/j.compstruct.2006.05.006.
  • Reinoso, J.; Blázquez, A.; Estefani, A.; París, F.; Cañas, J.; Arévalo, E.; Cruz, F. Experimental and Three-dimensional Global-local Finite Element Analysis of a Composite Component Including Degradation Process at the Interfaces. Compos. B Eng. 2012, 43(4), 1929–1942. DOI: 10.1016/j.compositesb.2012.02.010.
  • Akpinar, S.; Aydin, M. D.; Özel, A. A Study on 3-d Stress Distributions in the Bi-adhesively Bonded T-joints. Appl. Math. Modell. 2013, 37(24), 10220–10230. DOI: 10.1016/j.apm.2013.06.008.
  • de Freitas, S. T.; Sinke, J. Failure Analysis of Adhesively-bonded Metal-skin-to-composite-stiffener: Effect of Temperature and Cyclic Loading. Compos. Struct. 2017, 166, 27–37. DOI: 10.1016/j.compstruct.2017.01.027.
  • Kolanu, N. R.; Raju, G.; Ramji, M. Experimental and Numerical Studies on the Buckling and Post-buckling Behavior of Single Blade-stiffened Cfrp Panels. Compos. Struct. 2018, 196, 135–154. DOI: 10.1016/j.compstruct.2018.05.015.
  • Xará, J.; Campilho, R. Strength Estimation of Hybrid Single-l Bonded Joints by the Extended Finite Element Method. Compos. Struct. 2018, 183, 397–406. in honor of Prof. Y. Narita DOI: 10.1016/j.compstruct.2017.04.009.
  • Vijayaraju, K.; Mangalgiri, P.; Dattaguru, B. Experimental Study of Failure and Failure Progression in T-stiffened Skins. Compos. Struct. 2004, 64(2), 227–234. DOI: 10.1016/j.compstruct.2003.08.007.
  • Li, J. Pull-off Tests and Analysis of Composite Skin and Frame T-joint, in: 17th Annu. Tech. Conf. Am. Soc. Compos., 2002, USA.
  • Sargent, J.; Wilson, Q. Prediction of “Zed” Section Stringer Pull-off Loads. Int. J. Adhes. Adhes. 2003, 23(3), 189–198. DOI: 10.1016/S0143-7496(03)00011-3.
  • Zhang, K.; Li, L.; Duan, Y.; Li, Y. Experimental and Theoretical Stress Analysis for an Interface Stress Model of Single-l Adhesive Joints between Cfrp and Aluminum Components. Int. J. Adhes. Adhes. 2014, 50, 37–44. DOI: 10.1016/j.ijadhadh.2013.12.021.
  • Justo, J.; Reinoso, J.; Blázquez, A. Experimental Failure Investigation of Pull-off Tests of Single T-stiffened Composite Specimens. Compos. Struct. 2017, 177, 13–27. DOI: 10.1016/j.compstruct.2017.04.070.
  • Feih, S.; Shercliff, H. Composite Failure Prediction of Single-l Joint Structures under Bending. Compos. Part A Appl. Sci. Manuf. 2005, 36(3), 381–395. DOI: 10.1016/j.compositesa.2004.06.021.
  • Feih, S.; Shercliff, H. Adhesive and Composite Failure Prediction of Single-l Joint Structures under Tensile Loading. Int. J. Adhes. Adhes. 2005, 25(1), 47–59. DOI: 10.1016/j.ijadhadh.2004.02.005.
  • Zimmermann, R.; Klein, H.; Kling, A. Buckling and Postbuckling of Stringer Stiffened Fibre Composite Curved Panels – Tests and Computations. international Conference on Buckling and Postbuckling Behavior of Composite Laminated Shell Structures. 2006, 73, 150–161.
  • Reinoso, J.; Blázquez, A.; París, F.; Cañas, J.; Meléndez, J. Postbuckling Behaviour of a Pressurized Stiffened Composite Panel – Part I: Experimental Study. Compos. Struct. 2012, 94(5), 1533–1543. DOI: 10.1016/j.compstruct.2011.12.014.
  • Psarras, S.; Pinho, S.; Falzon, B. Design of Composite Stiffener Run-outs for Damage Tolerance Computational Mechanics and Design. Finite Ele. Anal. Des. 2011, 47(8), 949–954. DOI: 10.1016/j.finel.2011.03.011.
  • Demir Aydin, M.; Akpinar, S. The Strength of the Adhesively Bonded T-joints with Embedded Supports. Int. J. Adhes. Adhes. 2014, 50, 142–150. DOI: 10.1016/j.ijadhadh.2013.12.028.
  • Da Silva, L. F.; Adams, R. The Strength of Adhesively Bonded T-joints. Int. J. Adhes. Adhes. 2002, 22(4), 311–315. DOI: 10.1016/S0143-7496(02)00009-X.
  • Zarouchas, D.; Nijssen, R. Mechanical Behaviour of Thick Structural Adhesives in Wind Turbine Blades under Multi-axial Loading. J. Adhes. Sci. Technol. 2016, 30(13), 1413–1429. DOI: 10.1080/01694243.2016.1146392.
  • Antoniou, A.; Vespermann, M.; Sayer, F.; Krimmer, A., Life Prediction Analysis of Thick Adhesive Bond Lines under Variable Amplitude Fatigue Loading, in: Proc. 18th European Conference on Composite Materials, ECCM18, 2018, Athens, Greece.
  • Sayer, F.; Antoniou, A.; Van Wingerde, A. Investigation of Structural Bond Lines in Wind Turbine Blades by Sub-component Tests. Int. J. Adhes. Adhes. 2012, 37, 129–135. special Issue on Joint Design 3 DOI: 10.1016/j.ijadhadh.2012.01.021.
  • Jorgensen, J. B.;. Adhesive Joints in Wind Blades; Denmark: Denmark Technical University, 2017.
  • Veers, P. S.; Ashwill, T. D.; Sutherland, H. J.; Laird, D. L.; Lobitz, D. W.; Griffin, D. A.; Mandell, J. F.; Musial, W. D.; Jackson, K.; Zuteck, M. et al. Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades. Wind Energy. 2003, 6(3), 245–259. DOI: 10.1002/we.90
  • Bidaud, P. Analysis of the Cyclic Behavior of an Adhesive in an Assembly for Offshore Windmills Applications, Université Bretagne Occidentale 2014.
  • Crawford, C. A. The Path from Functional to Detailed Design of a Coning Rotor Wind Turbine Concept, Proceedings of the Canadian Engineering Education Association (CEEA), Canada, 2007.
  • Branner, K.; Berring, P. 2014. Methods for Testing of Geometrical Down-scaled Rotor Blades. DTU Wind Energy E 0069.
  • Philippidis, T.; Vassilopoulos, A.; Katopis, K.; Voutsinas, S. Thin/probeam: A Software for Fatigue Design and Analysis of Composite Rotor Blades. Wind Eng. 1996, 20(5), 349–362.
  • Swolfs, Y.;. Perspective for Fibre-hybrid Composites in Wind Energy Applications. Materials. 2017, 10(11), 1281. DOI: 10.3390/ma10111281.
  • Ribeiro, F.; Sena-Cruz, J.; Vassilopoulos, A. P. Tension-tension Fatigue Behavior of Hybrid Glass/carbon and Carbon/carbon Composites. Int. J. Fatigue 2021, 146, 106143. in press. DOI: 10.1016/j.ijfatigue.2021.106143.
  • Movahedi-Rad, A.-V.; Keller, T.; Vassilopoulos, A. P. Fatigue Damage in Angle-ply Gfrp Laminates under Tension-tension Fatigue. Int. J. Fatigue. 2018, 109, 60–69. DOI: 10.1016/j.ijfatigue.2017.12.015.
  • Movahedi-Rad, A.-V.; Keller, T.; Vassilopoulos, A. P. Interrupted Tension-tension Fatigue Behavior of Angle-ply Gfrp Composite Laminates. Int. J. Fatigue. 2018, 113, 377–388. DOI: 10.1016/j.ijfatigue.2018.05.001.
  • Philippidis, T. P.; Vassilopoulos, A. P. Life Prediction Methodology for GFRP Laminates under Spectrum Loading. Compos. Part A Appl. Sci. Manuf. 2004, 35(6), 657–666. DOI: 10.1016/j.compositesa.2004.02.009.
  • Mandell, J.; Samborsky, D., Snl/msu/doe Composite Material Fatigue Database, version 29.0, 2009.
  • Savvilotidou, M.; Keller, T.; Vassilopoulos, A. P. Fatigue Performance of a Cold-curing Structural Epoxy Adhesive Subjected to Moist Environments. Int. J. Fatigue. 2017, 103, 405–414. DOI: 10.1016/j.ijfatigue.2017.06.022.
  • Zhang, Y.; Vassilopoulos, A. P.; Keller, T. Fracture of Adhesively-bonded Pultruded GFRP Joints under Constant Amplitude Fatigue Loading. Int. J. Fatigue. 2010, 32(7), 979–987. DOI: 10.1016/j.ijfatigue.2009.11.004.
  • Sarfaraz, R.; Vassilopoulos, A. P.; Keller, T. Experimental Investigation of the Fatigue Behavior of Adhesively-bonded Pultruded GFRP Joints under Different Load Ratios. Int. J. Fatigue. 2011, 33(11), 1451–1460. DOI: 10.1016/j.ijfatigue.2011.05.012.
  • Shahverdi, M.; Vassilopoulos, A. P.; Keller, T. A Phenomenological Analysis of Mode I Fracture of Adhesively-bonded Pultruded GFRP Joints. Eng. Fract. Mech. 2011, 78(10), 2161–2173. DOI: 10.1016/j.engfracmech.2011.04.007.
  • Sarfaraz, R.; Vassilopoulos, A. P.; Keller, T. Experimental Investigation and Modeling of Mean Load Effect on Fatigue Behavior of Adhesively-bonded Pultruded GFRP Joints. Int. J. Fatigue. 2012, 44(8), 245–252. DOI: 10.1016/j.ijfatigue.2012.04.021.
  • Shahverdi, M.; Vassilopoulos, A. P.; Keller, T. A Total Fatigue Life Model for the Prediction of the R-ratio Effects on Fatigue Crack Growth of Adhesively-bonded Pultruded GFRP DCB Joints. Compos. Part A Appl. Sci. Manuf. 2012, 43(10), 1783–1790. DOI: 10.1016/j.compositesa.2012.05.004.
  • Sarfaraz, R.; Vassilopoulos, A. P.; Keller, T. Variable Amplitude Fatigue of Adhesively-bonded Pultruded GFRP Joints. Int. J. Fatigue. 2013, 55, 22–32. DOI: 10.1016/j.ijfatigue.2013.04.024.
  • Zhang, Y.; Vassilopoulos, A. P.; Keller, T. Environmental Effects on Fatigue Behavior of Adhesively-bonded Pultruded Structural Joints. Compos. Sci. Technol. 2009, 69(7–8), 1022–1028. DOI: 10.1016/j.compscitech.2009.01.024.
  • DNVGL-ST-0376, Rotor Blades for Wind Turbines 2015.
  • Kim, S.-W.; Kang, W.-R.; Jeong, M.-S.; Leel, I.; Kwon, I.-B. Deflection Estimation of a Wind Turbine Blade Using Fbg Sensors Embedded in the Blade Bonding Line. Smart Mater. Struct. 2013, 22(12), 125004. DOI: 10.1088/0964-1726/22/12/125004.
  • Fernandez, G.; Vandepitte, D.; Usabiaga, H.; Debruyne, S. Static and Cyclic Strength Properties of Brittle Adhesives with Porosity. 2017, 7, 291–298. 3rd International Symposium on Fatigue Design and Material Defects, FDMD 2017.
  • Griffin, D. A.; Malkin, M. C., Lessons Learned from Recent Blade Failures: Primary Causes and Risk-reducing Technologies, in: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, USA, 2017, p. 259.
  • Wetzel, K. K. Defect-tolerant Structural Design of Wind Turbine Blades, In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, USA, 2009, p. 2409.
  • Zarouchas, D.; Nijssen, R. Mechanical Behaviour of Thick Structural Adhesives in Wind Turbine Blades under Multi-axial Loading. J. Adhes. Sci. Technol. 2016, 30(13), 1413–1429. DOI: 10.1080/01694243.2016.1146392x.
  • Burst, N.; Adams, D. O.; Gascoigne, H. E. Investigating the Thin-film versus Bulk Material Properties of Structural Adhesives. J. Adhes. 2011, 87(1), 72–92. DOI: 10.1080/00218464.2011.538326x.
  • Lees, D.; Hutchinson, A. Mechanical Characteristics of Some Cold-cured Structural Adhesives. Int. J. Adhes. Adhes. 1992, 12(3), 197–205. DOI: 10.1016/0143-7496(92)90054-Y.
  • McGugan, M.; Pereira, G.; Sørensen, B.; Toftegaard, H.; Branner, K. Damage Tolerance and Structural Monitoring for Wind Turbine Blades. Philos Trans A Math Phys Eng Sci. 2014, 373(2035).
  • Adams, R.; Peppiatt, N. Stress Analysis of Adhesive-bonded Lap Joints. J. Strain Anal. Eng. Des. 1974, 9(3), 185-196.
  • Park, J.-H.; Choi, J.-H.; Kweon, J.-H. Evaluating the Strengths of Thick Aluminum-to-aluminum Joints with Different Adhesive Lengths and Thicknesses fifteenth International Conference on Composite Structures. 2010, 92, 2226–2235.
  • Grant, L.; Adams, R.; Da Silva, L. F. Experimental and Numerical Analysis of Single-lap Joints for the Automotive Industry. Int. J. Adhes. Adhes. 2009, 29(4), 405–413. DOI: 10.1016/j.ijadhadh.2008.09.001.
  • Rosemeier, M.; Antoniou, A.; Lester, C. Sub-components of Wind Turbine Blades: Proof of a Novel Trailing Edge Testing Concept. In Mechanics of Composite, Hybrid and Multifunctional Materials, Berlin, Heidelberg: Springer: 2019; Vol. 5, pp 267–274.
  • Sharp, K.; Bogdanovich, A.; Boyle, R.; Brown, J.; Mungalov, D. Wind Blade Joints Based on Non-crimp 3d Orthogonal Woven Pi Shaped Preforms. Compos. Part A Appl. Sci. Manuf. 2013, 49, 9–17. DOI: 10.1016/j.compositesa.2013.01.012.
  • Zarouchas, D.; Makris, A.; Sayer, F.; Van Hemelrijck, D.; Van Wingerde, A. Investigations on the Mechanical Behavior of a Wind Rotor Blade Subcomponent. Compos. B Eng. 2012, 43(2), 647–654. DOI: 10.1016/j.compositesb.2011.10.009.
  • Broughton, W. Review of Durability Test Methods and Standards for Assessing Long Term Performance of Adhesive Joints: Report No. 1, Nat. Phys. Lab, 1997.
  • Sears, A. T.; Samborsky, D. D.; Agastra, J. P.; Mandell., F., Fatigue Results and Analysis for Thick Adhesive Notched Lap Shear Test, in: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, USA, 2010, pp. 12–15.
  • Samborsky, D. D.; Mandell, J.; Sears, A.; Kils., O., Static and Fatigue Testing of Thick Adhesive Joints for Wind Turbine Blades, in: Proc. 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, USA, 2009, p. 1550.
  • Fernandez, G.; Vandepitte, D.; Usabiaga, H.; Van Hooreweder, B.; Debruyne, S. Experimental Identification of Static and Dynamic Strength of Epoxy Based Adhesives in High Thickness Joints. Int. J. Solids Struct. 2017, 120, 292–303. DOI: 10.1016/j.ijsolstr.2017.05.012.
  • Bakis, C. E.; Bank, L. C.; Brown, V. L.; Cosenza, E.; Davalos, J. F.; Lesko, J. J.; Machida, A.; Rizkalla, S. H.; Triantafillou, T. C. Fiber-Reinforced Polymer Composites for Construction – State-of-the-Art Review. J. Compos. Constr. 2002, 6(2), 73–87. DOI: 10.1061/(ASCE)1090-0268(2002)6:2(73).
  • Zaman, A.; Gutub, S.; Wafa, M. A Review on FRP Composites Applications and Durability Concerns in the Construction Sector. J. Reinf. Plast. Compos. 2013, 632(24), 1966–1988.
  • Zoghi, M.;. The International Handbook of FRP Composites in Civil Engineering, Florida USA, 2014.
  • Stewart, R.;. Composites in Construction Advance in New Directions. Reinforced Plastics. 2011, 55(5), 49–54. DOI: 10.1016/S0034-3617(11)70146-1.
  • Azam, R.; Soudki, K.; West, J. S.; Noël, M. Strengthening of Shear-critical RC Beams: Alternatives to Externally Bonded CFRP Sheets. Constr. Build. Mater. 2017, 151, 494–503. DOI: 10.1016/j.conbuildmat.2017.06.106.
  • Li, J.; Xie, J.; Liu, F.; Lu, Z. A Critical Review and Assessment for Frp-concrete Bond Systems with Epoxy Resin Exposed to Chloride Environments. Compos. Struct. 2019, 229, 111372. DOI: 10.1016/j.compstruct.2019.111372.
  • Gu, X.; Peng, B.; Chen, G.; Li, X.; Ouyang, Y. Rapid Strengthening of Masonry Structures Cracked in Earthquakes Using Fiber Composite Materials. J. Compos. Constr. 2012, 16(5), 590–603. DOI: 10.1061/(ASCE)CC.1943-5614.0000285.
  • De Jesus, A. M.; Pinto, J. M.; Morais, J. J. Analysis of Solid Wood Beams Strengthened with CFRP Laminates of Distinct Lengths. Constr. Build. Mater. 2012, 35, 817–828. DOI: 10.1016/j.conbuildmat.2012.04.124.
  • Cadei, J. M. C.; Stratford, T. J.; Hollaway, L. C.; WG, D., Strengthening Metallic Structures Using Externally Bonded Fibre-reinforced Polymers (C595), CIRIA Design Guide, 2004.
  • Kamruzzaman, M.; Jumaat, M. Z.; Sulong, N. H. R.; Islam, A. B. M. S. A Review on Strengthening Steel Beams Using FRP under Fatigue. Sci. World J. 2014, 702537.
  • Kałuża, M.; Hulimka, J.; Kubica, J.; Tekieli, M. The Methacrylate Adhesive to Double-lap Shear Joints Made of High-strength Steel—experimental Study. Materials. 2019, 12(1), 120. DOI: 10.3390/ma12010120.
  • Speranzini, E.; Agnetti, S. Flexural Performance of Hybrid Beams Made of Glass and Pultruded Gfrp. Constr. Build. Mater. 2015, 94, 249–262. DOI: 10.1016/j.conbuildmat.2015.06.008.
  • Bedon, C.; Louter, C. Numerical Analysis of Glass-frp Post-tensioned Beams – Review and Assessment. Compos. Struct. 2017, 177, 129–140. DOI: 10.1016/j.compstruct.2017.06.060.
  • Corradi, M.; Speranzini, E. Post-cracking Capacity of Glass Beams Reinforced with Steel Fibers. Materials. 2019, 12(231),  231.
  • Ascione, L.; Caron, J.; Godonou, P.; Van, K.; Jselmuijden, I.; Knippers, J.; Mottram, T.; Oppe, M.; Sorensen, M. G.; Taby, J.; et al., Prospect for New Guidance in the Design of Frp, Ispra: EC Joint Research Centre 2016.
  • Matthys, S.; Triantafillou, T.; Balázs, G.; Barros, J.; Bilotta, A.; Bournas, D.; Ceroni, F.; Czaderski, C.; D’Antino, T.; Kolyvas, C.; et al. Technical Report TG 5.1, Fédération Internationale Du Béton (Fib). Bulletin. 2019, (90), FIB.
  • Sena-Cruz, J.; Branco, J.; Jorge, M.; Barros, J. A.; Silva, C.; Cunha, V. M. Bond Behavior between Glulam and GFRP’s by Pullout Tests. Compos. B Eng. 2012, 43(3), 1045–1055. DOI: 10.1016/j.compositesb.2011.10.022.
  • Sena-Cruz, J.; Jorge, M.; Branco, J. M.; Cunha, V. M. Bond between Glulam and Nsm Cfrp Laminates. Constr. Build. Mater. 2013, 40, 260–269. special Section on Recycling Wastes for Use as Construction Materials DOI: 10.1016/j.conbuildmat.2012.09.089.
  • Pellegrino, C.; Sena-Cruz, J., Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures, State-of-the-Art Report of the RILEM, Technical Committee 234, DUC, Springer, New York, 2016.
  • Sui, L.; Luo, M.; Yu, K.; Xing, F.; Li, P.; Zhou, Y.; Chen, C. Effect of Engineered Cementitious Composite on the Bond Behavior between Fiber-reinforced Polymer and Concrete. Compos. Struct. 2018, 184, 775–788. DOI: 10.1016/j.compstruct.2017.10.050.
  • Soares, S.; Sena-Cruz, J.; Cruz, J. Influence of Surface Preparation Method on the Bond Behavior of Externally Bonded Cfrp Reinforcements in Concrete. Materials. 2019, 12(3), 1–20. DOI: 10.3390/ma12030414.
  • Ghiassi, B.; Xavier, J.; Oliveira, D. V.; Lourenço, P. B. Application of Digital Image Correlation in Investigating the Bond between FRP and Masonry. Compos. Struct. 2013, 106, 340–349. DOI: 10.1016/j.compstruct.2013.06.024.
  • Johnsson, H.; Blanksvard, T.; Carolin, A. Glulam Members Strengthened by Carbon Fibre Reinforcement. Mater. Struct. 2006, 40, 47–56. DOI: 10.1617/s11527-006-9119-7.
  • Zhang, Y.; Vassilopoulos, A. P.; Keller, T. Environmental Effects on Fatigue Behavior of Adhesively-bonded Pultruded Structural Joints. Compos. Sci. Technol. 2009, 69(7–8), 1022–1028. DOI: 10.1016/j.compscitech.2009.01.024x.
  • Sena-Cruz, J.; Barros, J.; Bianco, V.; Bilotta, A.; Bournas, D.; Ceroni, F.; Dalfré, G.; Kotynia, R.; Monti, G.; Nigro, E.; Triantagillou, T. “Nsm Systems” Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures;  State-of-the-Art Report of the RILEM Technical Committee 234-DUC, RILEM State-of-the-Art Reports.  Carlo Pellegrino, José Sena-Cruz, Ed, Vol  19, 2016.
  • Mukhtar, F. M.;. Customized Shear Test for Bond-slip Characterization of EBR FRP-concrete System: Influence of Substrate Aggregate Type. Compos. B Eng. 2019, 163, 606–621. DOI: 10.1016/j.compositesb.2018.12.150.
  • Valarinho, L.; Sena-Cruz, J.; Correia, J. R.; Branco, F. A. Numerical Simulation of the Flexural Behaviour of Composite glass-GFRP Beams Using Smeared Crack Models. Compos. B Eng. 2017, 110, 336–350. DOI: 10.1016/j.compositesb.2016.10.035.
  • Bilotta, A.; Ceroni, F.; Barros, J. A. O.; Costa, I.; Palmieri, A.; Szabó, Z. K.; Nigro, E.; Matthys, S.; Balazs, G. L.; Pecce, M. Bond of NSM FRP-Strengthened Concrete: Round Robin Test Initiative. J. Compos. Constr. 2016, 20(1), 04015026. DOI: 10.1061/(ASCE)CC.1943-5614.0000579.
  • Costa, I.; Barros, J. Critical Analysis of Fibre-reinforced Polymer Near-surface Mounted Double-shear Pull-out Tests. Strain. 2013, 49(4), 299–312. DOI: 10.1111/str.12038.
  • Juvandes, L. F. P.; Barbosa, R. M. T. Bond Analysis of Timber Structures Strengthened with Frp Systems. Strain. 2012, 48(2), 124–135. DOI: 10.1111/j.1475-1305.2011.00804.x.
  • de Sena Cruz, J. M.; Oliveira de Barros, J. A. Bond between Near-surface Mounted Carbon-fiber-reinforced Polymer Laminate Strips and Concrete. J. Compos. Constr. 2004, 8(6), 519–527. DOI: 10.1061/(ASCE)1090-0268(2004)8:6(519).
  • Barnes, T.; Pashby, I. Joining Techniques for Aluminium Spaceframes Used in Automobiles: Part Ii — Adhesive Bonding and Mechanical Fasteners. J. Mater. Process. Technol. 2000, 99(1–3), 72–79. DOI: 10.1016/S0924-0136(99)00361-1.
  • Silva, M. R. G.; Marques, E. A. S.; D. Silva, L. F. M. Behaviour under Impact of Mixed Adhesive Joints for the Automotive Industry. Latin Am. J. Solids Struct. 2016, 13, 835–853. DOI: 10.1590/1679-78252762.
  • Srajbr, C.; Thiemann, C.; Zäh, M.; Dilger, K. Induction-excited Thermography — A Method to Visualize Defects in Semi-structural Adhesive Bonds of Car Body Structures. Welding World. 2012, 56(3–4), 126–132. DOI: 10.1007/BF03321343.
  • Dillard, D.;. Advances in Structural Adhesive Bonding; Woodhead Publishing: Cambridge, 2010.
  • Papadakis, L.; Vassiliou, V.; Menicou, M.; Schiel, M.; Dilger, K. Adhesive Bonding of Attachments in Automotive Final Assembly. In IAENG Transactions on Engineering Technologies; Berlin, Heidelberg: Springer, 2013; pp 739–752.
  • Quattro Daily, Audi E-Tron Sportback S Line. 2020. https://www.quattrodaily.com/audi-e-tron-sportback-s-line-extended-video
  • Schiel, M.; Kreling, S.; Unger, C.; Fischer, F.; Dilger, K. Behavior of Adhesively Bonded Coated Steel for Automotive Applications under Impact Loads. Int. J. Adhes. Adhes. 2015, 56, 32–40. DOI: 10.1016/j.ijadhadh.2014.07.009.
  • Kadioglu, F.; Adams, R. D. Flexible Adhesives for Automotive Application under Impact Loading. Int. J. Adhes. Adhes. 2015, 56, 73–78. DOI: 10.1016/j.ijadhadh.2014.08.001.
  • Berntsen, J. F.; Morin, D.; Clausen, A. H.; Langseth, M. Experimental Investigation and Numerical Modelling of the Mechanical Response of a Semi-structural Polyurethane Adhesive. Int. J. Adhes. Adhes. 2019, 95, 102395. DOI: 10.1016/j.ijadhadh.2019.102395.
  • Qin, G.; Na, J.; Mu, W.; Tan, W. Effect of Thermal Cycling on the Degradation of Adhesively Bonded CFRP/aluminum Alloy Joints for Automobiles. Int. J. Adhes. Adhes. 2019, 95, 102439. DOI: 10.1016/j.ijadhadh.2019.102439.
  • Zhang, F.; Yang, X.; Wang, H.-P.; Zhang, X.; Xia, Y.; Zhou, Q. Durability of Adhesively-bonded Single Lap–shear Joints in Accelerated Hygrothermal Exposure for Automotive Applications. Int. J. Adhes. Adhes. 2013, 44, 130–137. DOI: 10.1016/j.ijadhadh.2013.02.009.
  • Araújo, H.; Machado, J.; Marques, E.; Da Silva, L. Dynamic Behaviour of Composite Adhesive Joints for the Automotive Industry. Compos. Struct. 2017, 171, 549–561. DOI: 10.1016/j.compstruct.2017.03.071.
  • Warren, C. D.; Paulauskas, F. L.; Boeman, R. G. Laser Ablation Assisted Adhesive Bonding of Automotive Structural Composites; Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1999.
  • Wu, Y.; Lin, J.; Carlson, B. E.; Lu, P.; Balogh, M. P.; Irish, N. P.; Mei, Y. Effect of Laser Ablation Surface Treatment on Performance of Adhesive-bonded Aluminum Alloys. Surf. Coat. Technol. 2016, 304, 340–347. DOI: 10.1016/j.surfcoat.2016.04.051.
  • Watson, B.; Nandwani, Y.; Worswick, M. J.; Cronin, D. S. Metallic Multi-material Adhesive Joint Testing and Modeling for Vehicle Lightweighting. Int. J. Adhes. Adhes. 2019, 95, 102421. DOI: 10.1016/j.ijadhadh.2019.102421.
  • Galvez, P.; Quesada, A.; Martinez, M. A.; Abenojar, J.; Boada, M. J. L.; Diaz, V. Study of the Behaviour of Adhesive Joints of Steel with Cfrp for Its Application in Bus Structures. Compos. B Eng. 2017, 129, 41–46. DOI: 10.1016/j.compositesb.2017.07.018.
  • Hirulkar, N.; Jaiswal, P.; Alessandro, P.; Reis, P. Influence of Mechanical Surface Treatment on the Strength of Mixed Adhesive Joint. Mater. Today Proc. 2018, 5(9), 18776–18788.
  • Jaiswal, P.; Hirulkar, N.; Papadakis, L.; Jaiswal, R. R.; Joshi, N. B. Parametric Study of Non Flat Interface Adhesively Bonded Joint. Mater. Today Proc. 2018, 5(9), 17654–17663.
  • Friedrich, K.; Almajid, A. A. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications. Appl. Compos. Mater. 2013, 20(2), 107–128. DOI: 10.1007/s10443-012-9258-7.
  • Moroni, F.; Alfano, M.; Romoli, L. Fatigue Analysis of Adhesive Joints with Laser Treated Substrates. Procedia Struct. Integr. 2016, 2, 120–127. DOI: 10.1016/j.prostr.2016.06.016.
  • Clarke, M.; Buckley, M.; Broughton, J.; Hutchinson, A., Characterisation and Simulation of Structural Adhesives, in: 7th European LS DYNA Conference, Salzburg, Austria, 2009.
  • Applications for 3M Panel Bonding and Impact Resistant Structural Adhesives. 2019. https://www.3m.com/3M/enUS/collision-repair-us/featured-products/structural-adhesives
  • Brede, M.; Heise, F.-J. Eds., Methodenentwicklung zur berechnung von hoeherfesten stahlklebverbindungen des fahrzeugbaus unter crashbelastung; Forschung fuer die Praxis, Germany, 2008. pp 676.
  • May, M.; Hesebeck, O. Failure of Adhesively Bonded Metallic T-joints Subjected to Quasi-static and Crash Loading. Eng. Fail. Anal. 2015, 56, 454–463. DOI: 10.1016/j.engfailanal.2014.12.007.
  • Meschut, G.; Janzen, V.; Olfermann, T. Innovative and Highly Productive Joining Technologies for Multi-material Lightweight Car Body Structures. J. Mater. Eng. Perform. 2014, 23(5), 1515–1523. DOI: 10.1007/s11665-014-0962-3.
  • Da Silva, L.; Pirondi, A.; Öchsner, A. E. Hybrid Adhesive Joints; Berlin Heidelberg: Springer-Verlag, 2011.
  • Fricke, H.; Vallée, T. Numerical Modeling of Hybrid-bonded Joints. J. Adhes. 2016, 92(7–9), 652–664. DOI: 10.1080/00218464.2015.1100995.
  • Fricke, H.; Vallée, T. 10 - Hybrid Joining Techniques. In Advanced Joining Processes; Cambridge, UK: Elsevier, 2021; pp 353–381.
  • Neugebauer, R.; Israel, M.; Mayer, B.; Fricke, H. Numerical and Experimental Studies on the Clinch-bonding and Riv-bonding Process. Key Eng. Mater. 2012, 504-506, 771–776. DOI: 10.4028/scientific.net/KEM.504-506.771.
  • Ufferman, B.; Abke, T.; Barker, M.; Vivek, A.; Daehn., G. S. Mechanical Properties of Joints in 5052 Aluminum Made with Adhesive Bonding and Mechanical Fasteners. Int. J. Adhes. Adhes. 2018, 83, 96–102. DOI: 10.1016/j.ijadhadh.2018.02.030.
  • Han, L.; Thornton, M.; Shergold, M. A Comparison of the Mechanical Behaviour of Self-piercing Riveted and Resistance Spot Welded Aluminium Sheets for the Automotive Industry. Mater. Des. 2010, 31(3), 1457–1467. DOI: 10.1016/j.matdes.2009.08.031.
  • Bartczak, B.; Mucha, J.; Trzepieciński, T. Stress Distribution in Adhesively-bonded Joints and the Loading Capacity of Hybrid Joints of Car Body Steels for the Automotive Industry. Int. J. Adhes. Adhes. 2013, 45, 42–52. DOI: 10.1016/j.ijadhadh.2013.03.012.
  • Yao, L.; Feng, Q.; Wan, D.; Wu, L.; Yang, K.; Hou, J.; Liu, B.; Wan, Q. Experiment and Finite Element Simulation of High Strength Steel Adhesive Joint Reinforced by Rivet for Automotive Applications. J. Adhes. Sci. Technol. 2017, 31(14), 1617–1625. DOI: 10.1080/01694243.2016.1266845.
  • Fu, M.; Mallick., P. K. Fatigue of Hybrid (Adhesive/bolted) Joints in Srim Composites. Int. J. Adhes. Adhes. 2001, 21(2), 145–159. DOI: 10.1016/S0143-7496(00)00047-6.
  • Lamanna, G.; Sepe, A.; Pozzi, R. Tensile Testing of Hybrid Composite Joints. Appl. Mech. Mater. 2014, 575, 452–456. www.scientific.net/AMM.575.452
  • Di Franco, G.; Fratini, L.; Pasta, A. Analysis of the Mechanical Performance of Hybrid (Spr/bonded) Single-lap Joints between Cfrp Panels and Aluminum Blanks. Int. J. Adhes. Adhes. 2013, 41, 24–32. DOI: 10.1016/j.ijadhadh.2012.10.008.
  • Vorderbrüggen, G.; Meschut, J. Investigations on a Material-specific Joining Technology for CFRP Hybrid Joints along the Automotive Process Chain. Compos. Struct. 2019, 230, 111533. DOI: 10.1016/j.compstruct.2019.111533.
  • Chen, Y.; Yang, X.; Li, M.; Mei, M. Influence of Working Temperatures on Mechanical Behavior of Hybrid Joints with Carbon Fiber Reinforced Plastic/aluminum Lightweight Materials for Automotive Structure. J. Manuf. Processes. 2019, 45, 392–407. DOI: 10.1016/j.jmapro.2019.07.022.
  • ASTM D3166-99(2020): Standard Test Method for Fatigue Properties of Adhesives in Shear by Tension Loading (Metal/metal) 2020.
  • BS EN 15190:2007: Structural Adhesives. Test Methods for Assessing Long Term Durability of Bonded Metallic Structures 2007.
  • Memorandum of Understanding for the implementation of the COST Action. “Reliable Roadmap for Certification of Bonded Primary Structures” (CERTBOND) CA18120. 2018. https://certbond.eu/wp-content/uploads/CA18120-e.pdf