376
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Enhanced corrosion resistance of adhesive/galvanised steel interfaces by nanocrystalline ZnO thin film deposition and molecular adhesion promoting films

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2210-2230 | Received 25 May 2021, Accepted 15 Jul 2021, Published online: 21 Jul 2021

References

  • Ma, X.; Scarpa, F.; Peng, H.-X.; Allegri, G.; Yuan, J.; Ciobanu, R. Design of a Hybrid Carbon Fibre/carbon Nanotube Composite for Enhanced Lightning Strike Resistance. Aerosp. Sci. Technol. 2015, 47, 367–377. DOI: 10.1016/j.ast.2015.10.002.
  • Bauer, A.; Grundmeier, G.; Steger, H.; Weitl, J. Corrosive Delamination Processes of CFRP-aluminum Alloy Hybrid Components. Mater. Corros. 2018, 69, 98–105. DOI: 10.1002/maco.201709637.
  • Stewart, R.;. Automotive Composites Offer Lighter Solutions. Reinf. Plast. 2010, 54, 22–28. DOI: 10.1016/S0034-3617(10)70061-8.
  • Fink, A.; Camanho, P. P.; Andrés, J. M.; Pfeiffer, E.; Obst, A. Hybrid CFRP/titanium Bolted Joints: Performance Assessment and Application to a Spacecraft Payload Adaptor. Compos. Sci. Technol. 2010, 70, 305–317. DOI: 10.1016/j.compscitech.2009.11.002.
  • Osborne, J.;. Automotive Composites – In Touch with Lighter and More Flexible Solutions. Reinf. Plast. 2013, 57, 20–24. DOI: 10.1016/S0034-3617(13)70055-9.
  • Pramanik, A.; Basak, A. K.; Dong, Y.; Sarker, P. K.; Uddin, M. S.; Littlefair, G.; Dixit, A. R.; Chattopadhyaya, S. Joining of Carbon Fibre Reinforced Polymer (CFRP) Composites and Aluminium Alloys – A Review. Compos. A. 2017, 101, 1–29. DOI: 10.1016/j.compositesa.2017.06.007.
  • Di Franco, G.; Fratini, L.; Pasta, A. Analysis of the Mechanical Performance of Hybrid (Spr/bonded) Single-lap Joints between CFRP Panels and Aluminum Blanks. Int. J. Adhes. Adhes. 2013, 41, 24–32. DOI: 10.1016/j.ijadhadh.2012.10.008.
  • Pandya, K. S.; Veerraju, C.; Naik, N. K. Hybrid Composites Made of Carbon and Glass Woven Fabrics under Quasi-static Loading. Mater. Des. 2011, 32, 4094–4099. DOI: 10.1016/j.matdes.2011.03.003.
  • Irina, M.; Azmi, A. I.; Tan, C. L.; Lee, C. C.; Khalil, A. Evaluation of Mechanical Properties of Hybrid Fiber Reinforced Polymer Composites and Their Architecture. Procedia Manuf. 2015, 2, 236–240. DOI: 10.1016/j.promfg.2015.07.041.
  • Dehkordi, M. T.; Nosraty, H.; Shokrieh, M. M.; Minak, G.; Ghelli, D. Low Velocity Impact Properties of Intra-ply Hybrid Composites Based on Basalt and Nylon Woven Fabrics. Mater. Des. 2010, 31, 3835–3844. DOI: 10.1016/j.matdes.2010.03.033.
  • Goushegir, S. M.; dos Santos, J. F.; Amancio-Filho, S. T. Friction Spot Joining of Aluminum AA2024/carbon-fiber Reinforced Poly(phenylene Sulfide) Composite Single Lap Joints: Microstructure and Mechanical Performance. Mater. Des. 2014, 54, 196–206. DOI: 10.1016/j.matdes.2013.08.034.
  • Bernd-Arno, B.; Sven, H.; Nenad, G.; Moritz, M.-C.; Tim, W.; André, N. Forming and Joining of Carbon-Fiber-Reinforced Thermoplastics and Sheet Metal in One Step. Procedia Engineering. 2017, 183, 227–232. DOI: 10.1016/j.proeng.2017.04.026.
  • Graham, D. P.; Rezai, A.; Baker, D.; Smith, P. A.; Watts, J. F. The Development and Scalability of a High Strength, Damage Tolerant, Hybrid Joining Scheme for Composite–metal Structures. Compos. A. 2014, 64, 11–24. DOI: 10.1016/j.compositesa.2014.04.018.
  • Stewart, R.;. Rebounding Automotive Industry Welcome News for FRP. Reinf. Plast. 2011, 55, 38–44. DOI: 10.1016/S0034-3617(11)70036-4.
  • Jacob, A.;. Carbon Fibre and Cars – 2013 in Review. Reinf. Plast. 2014, 58, 18–19. DOI: 10.1016/S0034-3617(14)70036-0.
  • Hubert, P.; Centea, T.; Grunefelder, L.; Nutt, S.; Kratz, J.; Levy, A. 2.4 Out-of-Autoclave Prepreg Processing. In Comprehensive Composite Materials II, II ed.; Beaumont, P. W., Zweben, C. H., Eds.; Elsevier: Amsterdam, Boston, Heidelberg, 2017; pp 63–94.
  • Hashmi, S.;, Ed. Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, 2015.
  • Rohwerder, M.; Le Duc, M.; Michalik, A. In Situ Investigation of Corrosion Localised at the Buried Interface between Metal and Conducting Polymer Based Composite Coatings. Electrochim. Acta. 2009, 54, 6075–6081. DOI: 10.1016/j.electacta.2009.02.103.
  • Benzarti, K.; Colin, X. Understanding the Durability of Advanced Fibre-reinforced Polymer (FRP) Composites for Structural Applications. In Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications; Bai, J., Ed.; Elsevier Science: Burlington, 2013; pp 361–439.
  • Ilinzeer, S.; Rupp, P.; Weidenmann, K. A. Influence of Corrosion on the Mechanical Properties of Hybrid Sandwich Structures with CFRP Face Sheets and Aluminum Foam Core. Compos. Struct. 2018, 202, 142–150. DOI: 10.1016/j.compstruct.2018.01.012.
  • Håkansson, E.; Hoffman, J.; Predecki, P.; Kumosa, M. The Role of Corrosion Product Deposition in Galvanic Corrosion of Aluminum/carbon Systems. Corros. Sci. 2017, 114, 10–16. DOI: 10.1016/j.corsci.2016.10.011.
  • Ireland, R.; Arronche, L.; La Saponara, V. Electrochemical Investigation of Galvanic Corrosion between Aluminum 7075 and Glass Fiber/epoxy Composites Modified with Carbon Nanotubes. Compos. Part B. 2012, 43, 183–194. DOI: 10.1016/j.compositesb.2011.08.001.
  • Liu, Z.; Curioni, M.; Jamshidi, P.; Walker, A.; Prengnell, P.; Thompson, G. E.; Skeldon, P. Electrochemical Characteristics of a Carbon Fibre Composite and the Associated Galvanic Effects with Aluminium Alloys. Appl. Surf. Sci. 2014, 314, 233–240. DOI: 10.1016/j.apsusc.2014.06.072.
  • Batuwitage, C.; Fawzia, S.; Thambiratnam, D.; Al-Mahaidi, R. Durability of CFRP Strengthened Steel Plate Double-strap Joints in Accelerated Corrosion Environments. Compos. Struct. 2017, 160, 1287–1298. DOI: 10.1016/j.compstruct.2016.10.101.
  • Borrie, D.; Liu, H. B.; Zhao, X. L.; Singh Raman, R. K.; Bai, Y. Bond Durability of Fatigued CFRP-steel Double-lap Joints Pre-exposed to Marine Environment. Compos. Struct. 2015, 131, 799–809. DOI: 10.1016/j.compstruct.2015.06.021.
  • Nguyen, T.-C.; Bai, Y.; Zhao, X.-L.; Al-Mahaidi, R. Durability of steel/CFRP Double Strap Joints Exposed to Sea Water, Cyclic Temperature and Humidity. Compos. Struct. 2012, 94, 1834–1845. DOI: 10.1016/j.compstruct.2012.01.004.
  • Dawood, M.; Rizkalla, S. Environmental Durability of a CFRP System for Strengthening Steel Structures. Constr. Build. Mater. 2010, 24, 1682–1689. DOI: 10.1016/j.conbuildmat.2010.02.023.
  • Heshmati, M.; Haghani, R.; Al-Emrani, M. Durability of Bonded FRP-to-steel Joints: Effects of Moisture, De-icing Salt Solution, Temperature and FRP Type. Compos. B Eng. 2017, 119, 153–167. DOI: 10.1016/j.compositesb.2017.03.049.
  • Liu, J.; Gao, J.; Zhao, Q. Failure Modes of CFRP Pre-tightened Single Tooth Joints under Axial Cyclic Tensile Loading. Constr. Build. Mater. 2019, 222, 786–795. DOI: 10.1016/j.conbuildmat.2019.06.206.
  • Santos, D. D.; Carbas, R.; Marques, E.; Da Silva, L. Reinforcement of CFRP Joints with Fibre Metal Laminates and Additional Adhesive Layers. Compos. Part B. 2019, 165, 386–396. DOI: 10.1016/j.compositesb.2019.01.096.
  • Selvaraj, S.; Madhavan, M. CFRP Strengthened Steel Beams: Improvement in Failure Modes and Performance Analysis. Structures. 2017, 12, 120–131. DOI: 10.1016/j.istruc.2017.08.008.
  • Selvaraj, S.; Madhavan, M. Enhancing the Structural Performance of Steel Channel Sections by CFRP Strengthening. Thin-Walled Struct. 2016, 108, 109–121. DOI: 10.1016/j.tws.2016.08.005.
  • Zhu, W.; Xiao, H.; Wang, J.; Fu, C. Characterization and Properties of AA6061-based Fiber Metal Laminates with Different Aluminum-surface Pretreatments. Compos. Struct. 2019, 111321. DOI: 10.1016/j.compstruct.2019.111321.
  • Zhang, Z.; Shan, J.-G.; Tan, X.-H.; Zhang, J. Effect of Anodizing Pretreatment on Laser Joining CFRP to Aluminum Alloy A6061. Int. J. Adhes. Adhes. 2016, 70, 142–151. DOI: 10.1016/j.ijadhadh.2016.06.007.
  • Reitz, V.; Meinhard, D.; Ruck, S.; Riegel, H.; Knoblauch, V. A Comparison of IR- and UV-laser Pretreatment to Increase the Bonding Strength of Adhesively Joined aluminum/CFRP Components. Compos. A. 2017, 96, 18–27. DOI: 10.1016/j.compositesa.2017.02.014.
  • Vayssieres, L.;. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Adv. Mater. 2003, 15, 464–466. DOI: 10.1002/adma.200390108.
  • Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S.-E. Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes. Chem. Mater. 2001, 13, 4395–4398. DOI: 10.1021/cm011160s.
  • Yamabi, S.; Imai, H. Growth Conditions for Wurtzite Zinc Oxide Films in Aqueous Solutions. J. Mater. Chem. 2002, 12, 3773–3778. DOI: 10.1039/b205384e.
  • Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Room-Temperature Ultraviolet Nanowire Nanolasers. Science. 2001, 292, 1897–1899. DOI: 10.1126/science.1060367.
  • Künze; Stephanie. Stromlose Abscheidung von porösem Zinkoxid auf Aluminium.
  • Meinderink, D.; Orive, A. G.; Ewertowski, S.; Giner, I.; Grundmeier, G. Dependance of Poly(acrylic Acid) Interfacial Adhesion on the Nanostructure of Electrodeposited ZnO Films. Acs Appl. Nano Mater. 2019, 2, 831–843. DOI: 10.1021/acsanm.8b02091.
  • Friedrich, F.;. Struktur Und Gitterdynamik Von Gruppe-V-Elementen in ZnO. Dissertation, Berlin, 2010.
  • Pomorska, A.; Grundmeier, G.; Ozcan, O. Effect of Zn2+ Concentration on the Adsorption of Organophosphonic Acids on Nanocrystalline ZnO Surfaces. Colloids Interface Sci. Commun. 2014, 2, 11–14. DOI: 10.1016/j.colcom.2014.08.004.
  • Bajat, J. B.; Mišković-Stanković, V. B.; Bibić, N.; Dražić, D. M. The Influence of Zinc Surface Pretreatment on the Adhesion of Epoxy Coating Electrodeposited on Hot-dip Galvanized Steel. Prog. Org. Coat. 2007, 58, 323–330. DOI: 10.1016/j.porgcoat.2007.01.011.
  • Ozcan, O.; Pohl, K.; Keil, P.; Grundmeier, G. Effect of Hydrogen and Oxygen Plasma Treatments on the Electrical and Electrochemical Properties of Zinc Oxide Nanorod Films on Zinc Substrates. Electrochem. Commun. 2011, 13, 837–839. DOI: 10.1016/j.elecom.2011.05.016.
  • Seo, B. I.; Shaislamov, U.; Ha, M. H.; Kim, S.-W.; Kim, H.-K.; Yang, B. ZnO Nanotubes by Template Wetting Process. Physica E. 2007, 37, 241–244. DOI: 10.1016/j.physe.2006.07.025.
  • Gan, X.; Li, X.; Gao, X.; Yu, W. Investigation on Chemical Etching Process of ZnO Nanorods toward Nanotubes. J. Alloys Compd. 2009, 481, 397–401. DOI: 10.1016/j.jallcom.2009.03.013.
  • Cheng, C.-L.; Lin, J.-S.; Chen, Y.-F. A Simple Approach for the Growth of Highly Ordered ZnO Nanotube Arrays. J. Alloys Compd. 2009, 476, 903–907. DOI: 10.1016/j.jallcom.2008.09.132.
  • Sun, Y.; Fox, N. A.; Riley, D. J.; Ashfold, M. N. R. Hydrothermal Growth of ZnO Nanorods Aligned Parallel to the Substrate Surface. J. Phys. Chem. C. 2008, 112, 9234–9239. DOI: 10.1021/jp8019107.
  • Tan, D.; Xiang, Y.; Leng, Y.; Leng, Y. On the metal/ZnO Contacts in a Sliding-bending Piezoelectric Nanogenerator. Nano Energy. 2018, 50, 291–297. DOI: 10.1016/j.nanoen.2018.05.055.
  • Zhang, J.; Liu, Z.; Liu, J.; Liu, Z. Effects of Seed Layers on Controlling of the Morphology of ZnO Nanostructures and Superhydrophobicity of ZnO Nanostructure/stearic Acid Composite Films. Mater. Chem. Phys. 2016, 183, 306–314. DOI: 10.1016/j.matchemphys.2016.08.031.
  • Meinderink, D.; Kielar, C.; Sobol, O.; Ruhm, L.; Rieker, F.; Nolkemper, K.; Orive, A. G.; Ozcan, O.; Grundmeier, G. Effect of PAA-induced Surface Etching on the Adhesion Properties of ZnO Nanostructured Films. Int. J. Adhes. Adhes. 2021, 106, 102812. DOI: 10.1016/j.ijadhadh.2021.102812.
  • Grothe, R.; Knust, S.; Meinderink, D.; Voigt, M.; Orive, A. G.; Grundmeier, G. Spray Pyrolysis of Thin Adhesion-promoting ZnO Films on ZnMgAl Coated Steel. Surf. Coat. Technol. 2020, 394, 125869. DOI: 10.1016/j.surfcoat.2020.125869.
  • Ozcan, O.; Pohl, K.; Ozkaya, B.; Grundmeier, G. Molecular Studies of Adhesion and De-Adhesion on ZnO Nanorod Film-Covered Metals. J. Adhes. 2013, 89, 128–139. DOI: 10.1080/00218464.2012.731928.
  • Pantoja, M.; Abenojar, J.; Martínez, M. A.; Velasco, F. Silane Pretreatment of Electrogalvanized Steels: Effect on Adhesive Properties. Int. J. Adhes. Adhes. 2016, 65, 54–62. DOI: 10.1016/j.ijadhadh.2015.11.006.
  • Torun, B.; Giner, I.; Grundmeier, G.; Ozcan, O. In Situ PM-IRRAS Studies of Organothiols and Organosilane monolayers–ZnO Interfaces at High Water Activities. Surf. Interface Anal. 2017, 49, 71–74. DOI: 10.1002/sia.6058.
  • Wapner, K.; Stratmann, M.; Grundmeier, G. Application of the Scanning Kelvin Probe for the Study of the Corrosion Resistance of Interfacial Thin Organosilane Films at Adhesive/metal Interfaces. Silicon Chem. 2005, 2, 235–245. DOI: 10.1007/s11201-005-0935-3.
  • Wapner, K.; Stratmann, M.; Grundmeier, G. Structure and Stability of Adhesion Promoting Aminopropyl Phosphonate Layers at Polymer/aluminium Oxide Interfaces. Int. J. Adhes. Adhes. 2008, 28, 59–70. DOI: 10.1016/j.ijadhadh.2007.05.001.
  • Ma, X.; Gao, M.; Zheng, J.; Xu, H.; Li, G. Conversion of Large-scale Oriented ZnO Rod Array into Nanotube Array under Hydrothermal Etching Condition via One-step Synthesis Approach. Physica E. 2010, 42, 2237–2241. DOI: 10.1016/j.physe.2010.04.026.
  • Fink, N.; Wilson, B.; Grundmeier, G. Formation of Ultra-thin Amorphous Conversion Films on Zinc Alloy Coatings: Part 1. Composition and Reactivity of Native Oxides on ZnAl (0.05%) Coatings. Electrochim. Acta. 2006, 51, 2956–2963. DOI: 10.1016/j.electacta.2005.08.030.
  • Grothe, R.; Wiesing, M.; Giner, I.; Meinderink, D.; Grundmeier, G. Scanning Kelvin Probe Blister Studies of the Delamination of Epoxy Films on Organosilane Modified ZnMgAl Alloy Coated Steel. Mater. Corros. 2017, 68, 1314–1320. DOI: 10.1002/maco.201709462.
  • Wapner, K.; Grundmeier, G. Scanning Kelvin Probe Measurements of the Stability of Adhesive/Metal Interfaces in Corrosive Environments. Adv. Eng. Mater. 2004, 6, 163–167. DOI: 10.1002/adem.200300579.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.