343
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Folding stress analysis of a sandwich plate based on transversely isotropic and rate-dependent constitutive relationship of adhesive

, , , &
Pages 2366-2395 | Received 10 Jun 2021, Accepted 22 Aug 2021, Published online: 02 Sep 2021

References

  • Lee, T. I.; Jo, W.; Kim, W.; Kim, J. H.; Paik, K. W.; Kim, T. S. Direct Visualization of Cross-sectional Strain Distribution in Flexible Devices. ACS Appl. Mater. Interfaces. 2019, 11(14), 13416–13422. DOI: 10.1021/acsami.9b01480.
  • Harris, K. D.; Elias, A. L.; Chung, H. J. Flexible Electronics under Strain: A Review of Mechanical Characterization and Durability Enhancement Strategies. J. Mater. Sci. 2016, 51, 2771–2805. DOI: 10.1007/s10853-015-9643-3.
  • Ito, N. M.; Gouveia, J. R.; Vidotti, S. E.; Ferreira, M.; Santos, D. Interplay of Polyurethane Mechanical Properties and Practical Adhesion of Flexible Multi-layer Laminates. J. Adhes. 2020, 96(14), 1219–1232. DOI: 10.1080/00218464.2019.1580580.
  • Serpilli, M.; Lenci, S. An Overview of Different Asymptotic Models for Anisotropic Three-layer Plates with Soft Adhesive. Int. J. Solids Struct. 2016, 81, 130–140. DOI: 10.1016/j.ijsolstr.2015.11.020.
  • Han, Y. C.; Jeong, E. G.; Kim, H.; Kwon, S.; Im, H.-G.; Bae, B.-S.; Choi, K. C. Reliable Thin-film Encapsulation of Flexible OLEDs and Enhancing Their Bending Characteristics through Mechanical Analysis. RSC Adv. 2016, 6, 40835–40843. DOI: 10.1039/C6RA06571F.
  • Park, Y.-T.; Kim, S.; Ham, S. B.; Cho, S. M. Folding-stability Criteria of Thin-film Encapsulation Layers for Foldable Organic Light-emitting Diodes. Thin Solid Films. 2020, 710, 138277. DOI: 10.1016/j.tsf.2020.138277.
  • Su, Y.; Li, S.; Li, R.; Dagdeviren, C. Splitting of Neutral Mechanical Plane of Conformal, Multilayer Piezoelectric Mechanical Energy Harvester. Appl. Phys. Lett. 2015, 107, 041905. DOI: 10.1063/1.4927677.
  • Nishimura, M.; Takebayashi, K.; Hishinuma, M.; Yamaguchi, H.; Murayama, A. A. 5.5-inch Full HD Foldable AMOLED Display Based on Neutral-plane Splitting Concept. J. Soc. Inf. Disp. 2019, 27, 480–486. DOI: 10.1002/jsid.796.
  • Lee, S.; Kwon, J.-Y.; Yoon, D.; Cho, H.; You, J.; Kang, Y. T.; Choi, D.; Hwang, W. Bendability Optimization of Flexible Optical Nanoelectronics via Neutral Axis Engineering. Nanoscale Res. Lett. 2012, 7, 256. DOI: 10.1186/1556-276X-7-256.
  • Shi, Y.; Rogers, J. A.; Gao, C.; Huang, Y. Multiple Neutral Axes in Bending of a Multiple-layer Beam with Extremely Different Elastic Properties. J. Appl. Mech. 2014, 81(11), 114501. DOI: 10.1115/1.4028465.
  • Li, S.; Su, Y.; Li, R. Splitting of the Neutral Mechanical Plane Depends on the Length of the Multi-layer Structure of Flexible Electronics. Proc. R. Soc. A. 2016, 472, 20160087. DOI: 10.1098/rspa.2016.0087.
  • Kim, W.; Lee, I.; Yoon Kim, D.; Yu, -Y.-Y.; Jung, H.-Y.; Kwon, S.; Seo Park, W.; Kim, T.-S. Controlled Multiple Neutral Planes by Low Elastic Modulus Adhesive for Flexible Organic Photovoltaics. Nanotechnology. 2017, 28, 194002. DOI: 10.1088/1361-6528/aa6a44.
  • Lee, C.; Liou, Y. Dependent Analyses of Multilayered Material/geometrical Characteristics on the Mechanical Reliability of Flexible Display Devices. IEEE Trans. Device Mater. Rel. 2018, 18(4), 639–642. DOI: 10.1109/TDMR.2018.2878485.
  • Jeong, E. G.; Kwon, J. H.; Kang, K. S.; Jeong, S. Y.; Choi, K. C. A Review of Highly Reliable Flexible Encapsulation Technologies Towards Rollable and Foldable OLEDs. J. Inf. Dis. 2020, 21(1), 19–32. DOI: 10.1080/15980316.2019.1688694.
  • Yeh, M.-K.; Chang, L.-Y.; Cheng, H.-C.; Wang, P.-H. Bending Stress Analysis of Laminated Foldable Touch Panel. Procedia Eng. 2014, 79, 189–193. DOI: 10.1016/j.proeng.2014.06.330.
  • Park, S.; Park, H.; Seong, S.; Chung, Y. Multilayer Substrate to Use Brittle Materials in Flexible Electronics. Sci. Rep. 2020, 10, 7660. DOI: 10.1038/s41598-020-64057-6.
  • Lee, H.; Han, J.; Ham, S. B.; Jang, C.; Huh, M. S.; Cho, S. M. Folding Stabilities of Encapsulation Layers at Positions off the Mechanical Neutral Plane. Appl. Phys. Express. 2018, 11, 086502. DOI: 10.7567/APEX.11.086502.
  • Jang, B.; Kim, K. S.; Kim, J. H.; Choi, H. J.; Park, H. S.; Lee, H. J. Rate-dependent Adhesion between a Spherical PDMS Stamp and Silicon Substrate for a Transfer-assembly Process. J. Adhes. 2011, 87, 744–754. DOI: 10.1080/00218464.2011.597302.
  • Villey, R.; Creton, C.; Cortet, P. P.; Dalbe, M. J.; Ciccotti, M. Rate-dependent Elastic Hysteresis during the Peeling of Pressure Sensitive Adhesives. Soft Matter. 2015, 11(17), 3480–3491. DOI: 10.1039/C5SM00260E.
  • Ler, M.; Alabort, E.; Cui, H.; Rito, R.; Blackman, B.; Petrinic, N. Experimental Characterisation and Numerical Modelling of the Influence of Bondline Thickness, Loading Rate, and Deformation Mode on the Response of Ductile Adhesive Interfaces. J. Mech. Phys. Solids. 2019, 130, 349–369. DOI: 10.1016/j.jmps.2019.06.011.
  • Park, S. J.; Liechti, K. M. Rate-dependent Large Strain Behavior of a Structural Adhesive. Mech. Time-Dependent Mater. 2003, 7, 143–164. DOI: 10.1023/A:1025616409697.
  • Shim, W.; Jang, J.; Choi, J.-H.; Cho, J.-M.; Yoon, S.-J.; Choi, C.-H.; Yu, W.-R. Simulating Rate- and Temperature-dependent Behaviors of Adhesives Using a Nonlinear Viscoelastic Model. Mech. Mater. 2020, 147, 103446. DOI: 10.1016/j.mechmat.2020.103446.
  • Zgoul, M. H. Use of Artificial Neural Networks for Modelling Rate Dependent Behaviour of Adhesive Materials. Int. J. Adhes. Adhes. 2012, 36, 1–7. DOI: 10.1016/j.ijadhadh.2012.03.003.
  • Pritchard, R. H.; Lava, P.; Debruyne, D.; Terentjev, E. M. Precise Determination of the Poisson Ratio in Soft Materials with 2D Digital Image Correlation. Soft Matter. 2013, 9, 6037–6045. DOI: 10.1039/C3SM50901J.
  • Pandini, S.; Pegoretti, A. Time, Temperature, and Strain Effects on Viscoelastic Poisson’s Ratio of Epoxy Resins. Polym. Eng. Sci. 2008, 48, 1434–1441. DOI: 10.1002/pen.21060.
  • Bischoff, J. E.; Arruda, E. M.; Grosh, K. A New Constitutive Model for the Compressibility of Elastomers at Finite Deformations. Rubber Chem. Technol. 2001, 74, 541–559. DOI: 10.5254/1.3544956.
  • Horgan, C. O.; Saccomandi, G. Constitutive Models for Compressible Nonlinearly Elastic Materials with Limiting Chain Extensibility. J. Elasticity. 2004, 77, 123–138. DOI: 10.1007/s10659-005-4408-x.
  • Jia, Y.; Liu, Z.; Wu, D.; Chen, J.; Meng, H. Mechanical Simulation of Foldable AMOLED Panel with a Module Structure. Org. Electron. 2019, 65, 185–192. DOI: 10.1016/j.orgel.2018.11.026.
  • Kwon, H. J.; Shim, H. S.; Kim, S.; Choi, W.; Chun, Y.; Kee, I. S.; Lee, S. Y. Mechanically and Optically Reliable Folding Structure with a Hyperelastic Material for Seamless Foldable Displays. Appl. Phys. Lett. 2011, 98, 151904. DOI: 10.1063/1.3576906.
  • Wu, D.; Shi, J.; Chen, J.; Liao, D. P-10.3: Structural Optimization Method of Foldable AMOLED Panel Based on Mechanical Theory. SID. Symp. Dig. Tech. Papers. 2021, 52, 574–577. DOI: 10.1002/sdtp.14560.
  • Version A. 6.14 Documentation (Abaqus). 2014. Abaqus User’s Manual.
  • Khajehsaeid, H.; Arghavani, J.; Naghdabadi, R. A Hyperelastic Constitutive Model for Rubber-like Materials. Eur. J. Mech. A Solids. 2013, 38, 144–151. DOI: 10.1016/j.euromechsol.2012.09.010.
  • Hossain, M.; Steinmann, P. More Hyperelastic Models for Rubber-like Materials: Consistent Tangent Operators and Comparative Study. J. Mech. Behav. Mater. 2013, 22, 27–50. DOI: 10.1515/jmbm-2012-0007.
  • Shahzad, M.; Kamran, A.; Siddiqui, M. Z.; Farhan, M. Mechanical Characterization and FE Modelling of a Hyperelastic Material. Mater. Res. 2015, 18, 918–924. DOI: 10.1590/1516-1439.320414.
  • Chiminelli, A.; Valero, C.; Lizaranzu, M.; López, C. I.; Canales, M. Modelling of Bonded Joints with Flexible Adhesives. J. Adhes. 2019, 95, 369–384. DOI: 10.1080/00218464.2018.1562347.
  • Karimzadeh, A.; Ayatollahi, M. R.; Rahimian Koloor, S. S.; Bushroa, A. R.; Yahya, M. Y.; Tamin, M. N. Assessment of Compressive Mechanical Behavior of Bis-GMA Polymer Using Hyperelastic Models. Polymers. 2019, 11, 1571. DOI: 10.3390/polym11101571.
  • Darijani, H.; Naghdabadi, R. Hyperelastic Materials Behavior Modeling Using Consistent Strain Energy Density Functions. Acta Mech. 2010, 213, 235–254. DOI: 10.1007/s00707-009-0239-3.
  • Ma, L.; Gu, J. 3D Bending Simulation and Mechanical Properties of the OLED Bending Area. Open Phys. 2020, 18, 397–407. DOI: 10.1515/phys-2020-0165.
  • Cheng, A.; Chen, Y.; Jin, J.; Su, T. 74-3: Study on Mechanical Behavior and Effect of Adhesive Layers in Foldable AMOLED Display by Finite Element Analysis. SID. Symp. Dig. Tech. Papers. 2019, 50, 1060–1063. DOI: 10.1002/sdtp.13110.
  • Dantas, M. A.; Carbas, R.; Marques, E. A. S.; Parente, M. P. L.; Kushner, D.; Da Silva, L. F. M. Numerical Study of Flexible Tubular Metal-polymer Adhesive Joints. J. Adhes. 2020, 1–23. DOI: 10.1080/00218464.2020.1822173.
  • Cai, X.; Xu, J. A Generalized Life Evaluation Formula for Uniaxial and Multiaxial Static Fatigue. Ceram. Int. 2016, 42, 3212–3218. DOI: 10.1016/j.ceramint.2015.10.110.
  • Cai, X.; Xu, J. Effective Fatigue Stress and Criterion for High-cycle Multi-axial Fatigue. J. Mater. Eng. Perform. 2015, 24, 158–166. DOI: 10.1007/s11665-014-1309-9.
  • Cheng, H.-C.; Xu, W.-H.; Chen, W.-H.; Wang, P.-H.; Chen, K.-F.; Chang, -C.-C. Bending Characteristics of Foldable Touch Display Panel with a Protection Structure Design. Adv. Mater. Sci. Eng. 2015, 2015, 106424. DOI: 10.1155/2015/106424.
  • Hsieh, Y.-T.; Chen, J.-Y.; Shih, -C.-C.; Chueh, -C.-C.; Chen, W.-C. Mechanically Robust, Stretchable Organic Solar Cells via Buckle-on-elastomer Strategy. Org. Electron. 2017, 53, 339–345. DOI: 10.1016/j.orgel.2017.12.011.
  • Hu, N.; Burgueño, R. Buckling-induced Smart Applications: Recent Advances and Trends. Smart Mater. Struct. 2015, 24, 063001. DOI: 10.1088/0964-1726/24/6/063001.
  • Yiatros, S.; Marangos, O.; Wadee, M. A.; Georgiou, C. Localized Buckling in Sandwich Struts with Inhomogeneous Deformations in Both Face Plates. Compos. Struct. 2015, 133, 630–641. DOI: 10.1016/j.compstruct.2015.07.110.
  • Mohammed, D. W.; Waddingham, R.; Flewitt, A. J.; Sierros, K. A.; Bowen, J.; Kukureka, S. N. Mechanical Properties of Amorphous Indium-gallium-zinc Oxide Thin Films on Compliant Substrates for Flexible Optoelectronic Devices. Thin Solid Films. 2015, 594, 197–204. DOI: 10.1016/j.tsf.2015.09.052.
  • Nikravesh, S.; Ryu, D.; Shen, Y.-L. Instabilities of Thin Films on a Compliant Substrate: Direct Numerical Simulations from Surface Wrinkling to Global Buckling. Sci. Rep. 2020, 10, 5728. DOI: 10.1038/s41598-020-62600-z.
  • Shishehsaz, M.; Raissi, H.; Moradi, S. Stress Distribution in a Five-layer Circular Sandwich Composite Plate Based on the Third and Hyperbolic Shear Deformation Theories. Mech. Adv. Mater. Struct. 2020, 27, 927–940. DOI: 10.1080/15376494.2018.1502379.
  • Narayanamurthy, V.; Chen, J. F.; Cairns, J.; Ramaswamy, A. Effect of Shear Deformation on Interfacial Stresses in Plated Beams Subjected to Arbitrary Loading. Int. J. Adhes. Adhes. 2011, 31, 862–874. DOI: 10.1016/j.ijadhadh.2011.08.007.
  • Shishesaz, M.; Reza, A. The Effect of Viscoelasticity of Polymeric Adhesives on Shear Stress Distribution in a Single-lap Joint. J. Adhes. 2013, 89, 859–880. DOI: 10.1080/00218464.2012.750581.
  • Li, S.; Liu, X.; Li, R.; Su, Y. Shear Deformation Dominates in the Soft Adhesive Layers of the Laminated Structure of Flexible Electronics. Int. J. Solids Struct. 2017, 110-111, 305–314. DOI: 10.1016/j.ijsolstr.2016.12.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.