1,155
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Lifetime prediction of bonded structural patch repairs for wind turbine pitch bearing strengthening

, , , , &
Pages 739-757 | Received 30 Jul 2021, Accepted 09 Nov 2021, Published online: 09 Dec 2021

References

  • Romax Technology. https://romaxtech.com/ (accessed October 8, 2021)
  • Budny, R. Improving Pitch Bearing Reliability. RBB Eng. 2016.
  • Dhanola, A.; Garg, H. C. Tribological Challenges and Advancements in Wind Turbine Bearings: A Review. Eng. Fail. Anal. 2020, 118, 104885. DOI: 10.1016/j.engfailanal.2020.104885.
  • Asensio, M.; Lekuona, I.; Olave, M.; Zurutuza, A. Bearing Having a Stiffener of Overstress Compensation. 2019, EP3421829.
  • European Commission. Innovative Future-Proof Testing Methods for Reliable Critical Components in Wind Turbines. https://cordis.europa.eu/project/id/851245 (accessed October 8, 2021)
  • Da Silva, L. F. M.; Campilho, R. D. S. G. Advances in Numerical Modelling of Adhesive Joints. SpringerBriefs Appl. Sci. Technol. 1–93 2011. DOI: 10.1007/978-3-642-23608-2_1.
  • Fernández, G.; Vandepitte, D.; Usabiaga, H.; Van Hooreweder, B.; Debruyne, S. Experimental Identification of Static and Dynamic Strength of Epoxy Based Adhesives in High Thickness Joints. Int. J. Solids Struct. 2017, 120, 292–303. DOI: 10.1016/j.ijsolstr.2017.05.012.
  • Castro Sousa, F.; Akhavan-Safar, A.; Rakesh, G.; Da Silva, L. F. M. Fatigue Life Estimation of Adhesive Joints at Different Mode Mixities. J. Adhes. 2020, 1–23. doi:10.1080/00218464.2020.1804376.
  • Castro Sousa, F.; Akhavan-Safar, A.; Goyal, R.; Da Silva, L. F. M. Fatigue Life Estimation of Single Lap Adhesive Joints Using a Critical Distance Criterion: An Equivalent Notch Approach. Mech. Mater. 2021, 153, 103670. DOI: 10.1016/j.mechmat.2020.103670.
  • Beber, V. C.; Baumert, M.; Klapp, O.; Nagel, C. Fatigue Failure Criteria for Structural Film Adhesive Bonded Joints with Considerations of Multiaxiality, Mean Stress and Temperature. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 636–650. DOI: 10.1111/ffe.13383.
  • Camanho, P. P.; Davila, C. G.; Moura, M. F. Numerical Simulation of Mixed Mode Progressive Delamination in Composite Materials. J. Compos. Mater. 2003, 37, 1415–1438. DOI: 10.1177/0021998303034505.
  • Pirondi, A.; Moroni, F. A Progressive Damage Model for the Prediction of Fatigue Crack Growth in Bonded Joints. J. Adhes. 2010, 86, 501–521. DOI: 10.1080/00218464.2010.484305.
  • Turon, A.; Costa, J.; Camanho, P. P.; Dávila, C. G. Simulation of Delamination in Composites under High-Cycle Fatigue. Compos. Part A-Appl. S. 2007, 38, 2270–2282. DOI: 10.1016/j.compositesa.2006.11.009.
  • Moroni, F.; Pirondi, A. A. Procedure for the Simulation of Fatigue Crack Growth in the Adhesively Bonded Joints Based on the Cohesive Zone Model and Different Mixed Mode Propagation Criteria. Eng. Fract. Mech. 2011, 78, 1808–1816. DOI: 10.1016/j.engfracmech.2011.02.004.
  • Ji, Y. M.; Han, K. S. Fracture Mechanics Approach for Failure of Adhesive Joints in Wind Turbine Blades. Renew. Energ. 2014, 65, 23–28. DOI: 10.1016/j.renene.2013.07.004.
  • Salimi-Majd, D.; Azimzadeh, V. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint. Appl. Compos. Mater. 2015, 22, 269–287. DOI: 10.1007/s10443-014-9405-4.
  • 3M. 3M™ Scotch-Weld™ EC-9323-2 B/A. https://multimedia.3m.com/mws/media/820935O/3m-scotch-weld-9323-b-a.pdf (accessed October 8, 2021)
  • ASTM D638–14. Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, 2014.
  • Manterola, J.; Cabello, M.; Zurbitu, J.; Renart, J.; Turon, A.; Jumel, J.; Urresti, I. Effect of the Width-to-Thickness Ratio on the Mode I Fracture Toughness of Flexible Bonded Joints. Eng. Fract. Mech. 2019, 218, 106584. DOI: 10.1016/j.engfracmech.2019.106584.
  • ASTM D1002-10(2019). Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-metal). ASTM International: West Conshohocken, PA, 2019.
  • ISO-25217. Determination of the Mode I Adhesive Fracture Energy of Structural Adhesive Joints Using Double Cantilever Beam and Tapered Double Cantilever Beam Specimens. Tech. Rep. Int. Org. Stdzn. 2009.
  • Renart, J.; Blanco, N.; Pajares, E.; Costa, J.; Lazcano, S.; Santacruz, G. Side Clamped Beam (SCB) Hinge System for Delamination Tests in Beam-Type Composite Specimens. Compos. Sci. Technol. 2011, 71, 1023–1029. DOI: 10.1016/j.compscitech.2010.10.005.
  • ASTM D7905/D7905M-19. Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, 2019.
  • Stelzer, S.; Brunner, A. J.; Argüelles, A.; Murphy, N.; Cano, G. M.; Pinter, G. Mode I Delamination Fatigue Crack Growth in Unidirectional Fiber Reinforced Composites: Results from ESIS TC4 Round-Robins. Eng. Fract. Mech. 2014, 116, 92–107. DOI: 10.1016/j.engfracmech.2013.12.002.
  • Brunner, A. J.; Murphy, N.; Pinter, G. Development of a Standardized Procedure for the Characterization of Interlaminar Delamination Propagation in Advanced Composites under Fatigue Mode I Loading Conditions. Eng. Fract. Mech. 2009, 76, 2678–2689. DOI: 10.1016/j.engfracmech.2009.07.014.
  • Renart, J.; Vicens, J.; Budhe, S.; Rodríguez-Bellido, A.; Comas, J.; Mayugo, A.; Costa, J. An Automated Methodology for Mode II Delamination Tests under Fatigue Loading Based on the Real Time Monitoring of the Specimen’s Compliance. Int. J. Fatigue. 2016, 82, 634–642. DOI: 10.1016/j.ijfatigue.2015.09.021.
  • Paris, P. C.; Gomez, M. P.; Anderson, W. E. A Rational Analytic Theory of Fatigue. Trend Eng. 1961, 13, 9–14.
  • Barrett, R. T. Fastener Design Manual. NASA Technical Reports Server. NASA-RP-122 1990, 16.
  • Olave, M.; Urresti, I.; Hidalgo, R.; Zabala, H.; Neve, M. D1.1 Technical, Environmental and Social Requirements of the Future Wind Turbines and Lifetime Extension. Innteresting. 2020. https://www.innterestingproject.eu/.
  • Manterola, J.; Aguirre, M.; Zurbitu, J.; Renart, J.; Turon, A.; Urresti, I. Using Acoustic Emissions (AE) to Monitor Mode I Crack Growth in Bonded Joints. Eng. Fract. Mech. 2020, 224, 106778. DOI: 10.1016/j.engfracmech.2019.106778.
  • Turon, A.; Dávila, C. G.; Camanho, P. P.; Costa, J. An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models. Eng. Fract. Mech. 2007, 74, 1665–1682. DOI: 10.1016/j.engfracmech.2006.08.025.
  • Kinloch, A. J.; Wang, Y.; Williams, J. G.; Yayla, P. The Mixed-Mode Delamination of Fibre Composite Materials. Compos. Sci. Technol. 1993, 47, 225–237. DOI: 10.1016/0266-3538(93)90031-B.
  • Ramkumar, R. L.; Whitcomb, J. D. Characterization of Mode I and Mixed-Mode Delamination Growth in T300/5208 Graphite/Epoxy. In Delamination and Debonding of Materials, 1985; Vol. 876 (ASTM International), pp 315–335.
  • Zimmermann, J.; Sadeghi, M. Z.; Schroeder, K. U. The Effect of γ-Radiation on the Mechanical Properties of Structural Adhesive. Int. J. Adhes. Adhes. 2019, 93, 2–7. DOI: 10.1016/j.ijadhadh.2019.01.028.
  • Manterola, J.; Renart, J.; Zurbitu, J.; Turon, A.; Urresti, I. Mode I Fracture Characterisation of Rigid and Flexible Bonded Joints Using an Advanced Wedge-Driven Test. Mech. Mater. 2020, 148, 103534. DOI: 10.1016/j.mechmat.2020.103534.
  • Pérez-Galmés, M.; Renart, J.; Sarrado, C.; Brunner, A. J.; Rodríguez-Bellido, A. Towards a Consensus on Mode II Adhesive Fracture Testing: Experimental Study. Theor. Appl. Fract. Mech. 2018, 98, 210–219. DOI: 10.1016/j.tafmec.2018.09.014.