245
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Lifetime calculation of adhesively bonded joints under proportional and non-proportional multiaxial fatigue loading: a combined critical plane and critical distance approach

, , & ORCID Icon
Pages 780-809 | Received 19 Jul 2021, Accepted 11 Nov 2021, Published online: 23 Nov 2021

References

  • Habenicht, G. Kleben: Grundlagen, Technologien, Anwendungen.: VDI-Buch; Springer, 2009.
  • Shenoy, V.; Ashcroft, I. A.; Critchlow, G. W.; Crocombe, A. D. Unified Methodology for the Prediction of the Fatigue Behaviour of Adhesively Bonded Joints. Int. J. Fatigue. 2010, 32(8), 1278–1288. DOI: 10.1016/j.ijfatigue.2010.01.013.
  • Da Silva, L. F. M.; Öchsner, A.; Adams, R. D. Handbook of Adhesion Technology: Handbook of Adhesion Technology; Springer Berlin Heidelberg, 2011.
  • Arenas, J. M.; Narbón, J. J.; Alía, C. Optimum Adhesive Thickness in Structural Adhesives Joints Using Statistical Techniques Based on Weibull Distribution. Int. J. Adhes. Adhes. 2010, 30(3), 160–165. DOI: 10.1016/j.ijadhadh.2009.12.003.
  • Banea, M. D.; Da Silva, L. F. M. Adhesively Bonded Joints in Composite Materials: An Overview. Proc. Inst. Mech. Eng. Part L. 2009, 223(1), 1–18. DOI: 10.1243/14644207jmda219.
  • Eklind, A.; Walander, T.; Carlberger, T.; Stigh, U. High Cycle Fatigue Crack Growth in Mode I of Adhesive Layers: Modelling, Simulation and Experiments. Int. J. Fract. 2014, 190(1–2), 125–146. DOI: 10.1007/s10704-014-9979-8.
  • Haibach, E. Betriebsfestigkeit: Verfahren und Daten zur Bauteilberechnung: VDI-Buch; Springer, 2006.
  • You, B.-R.; Lee, S.-B. A Critical Review on Multiaxial Fatigue Assessments of Metals. Int. J. Fatigue. 1996, 18(4), 235–244. DOI: 10.1016/0142-1123(96)00002-3.
  • Castro Sousa, F.; Akhavan-Safar, A.; Rakesh, G.; Da Silva, L. F. M. Fatigue Life Estimation of Adhesive Joints at Different Mode Mixities. J. Adhes. 2020, 1–23. DOI: 10.1080/00218464.2020.1804376.
  • Beber, V. C.; Brede, M. Multiaxial Static and Fatigue Behaviour of Elastic and Structural Adhesives for Railway Applications. Procedia Struct. Integr. 2020, 28, 1950–1962. DOI: 10.1016/j.prostr.2020.11.018.
  • Beber, V. C.; Schneider, B. Fatigue of Structural Adhesives under Stress Concentrations: Notch Effect on Fatigue Strength, Crack Initiation and Damage Evolution. Int. J. Fatigue. 2020, 140, 105824. DOI: 10.1016/j.ijfatigue.2020.105824.
  • Beber, V. C.; Baumert, M.; Klapp, O.; Nagel, C. Fatigue Failure Criteria for Structural Film Adhesive Bonded Joints with Considerations of Multiaxiality, Mean Stress and Temperature. Fat. Frac. Eng. Mat. Struct. 2021, 44(3), 636–650. DOI: 10.1111/ffe.13383.
  • Silva, G. C.; Beber, V. C.; Pitz, D. B. Machine Learning and Finite Element Analysis: An Integrated Approach for Fatigue Lifetime Prediction of Adhesively Bonded Joints. Fatigue Fract. Eng. Mater. Struct. 2021, 44(12), 3334–3348. DOI: 10.1111/ffe.13559.
  • Rocha, A. V. M.; Akhavan‐Safar, A.; Carbas, R.; Marques, E. A. S.; Goyal, R.; El-zein, M., et al. Fatigue Crack Growth Analysis of Different Adhesive Systems: Effects of Mode Mixity and Load Level. Fatigue Fract. Eng. Mater. Struct. 2020, 43(2), 330–341. DOI: 10.1111/ffe.13145.
  • Monteiro, J.; Akhavan-Safar, A.; Carbas, R.; Marques, E.; Goyal, R.; El-zein, M., et al. Influence of Mode Mixity and Loading Conditions on the Fatigue Crack Growth Behaviour of an Epoxy Adhesive. Fatigue Fract. Eng. Mater. Struct. 2020, 43(2), 308–316. DOI: 10.1111/ffe.13125.
  • Cunha, M. R. O.; Carbas, R. J. C.; Marques, E. A. S.; Akhavan-Safar, A.; Da Silva, L. F. M. Fatigue Behaviour of an Epoxy Adhesive under Mixed-mode Conditions. Tecnol. Metal. Mater. Min. 2021, 18, e2463. DOI: 10.4322/2176-1523.20212463.
  • Li, H.; Zhang, J.; Shen, H. Z.; Wei, X. L. Multiaxial Fatigue Experiments and Life Prediction for Silicone Sealant Bonding Butt-joints. Theor. Appl. Fract. Mech. 2019, 103, 102245. DOI: 10.1016/j.tafmec.2019.102245.
  • Shamsaei, N.; Fatemi, A. Effect of Microstructure and Hardness on Non-proportional Cyclic Hardening Coefficient and Predictions. Mater. Sci. Eng. A. 2010, 527(12), 3015–3024. DOI: 10.1016/j.msea.2010.01.056.
  • Gates, N.; Fatemi, A. Notched Fatigue Behavior and Stress Analysis under Multiaxial States of Stress. Int. J. Fatigue. 2014, 67, 2–14. DOI: 10.1016/j.ijfatigue.2014.01.014.
  • Radaj, D.; Vormwald, M. Ermüdungsfestigkeit; Springer Berlin Heidelberg, 2007.
  • Fatemi, A.; Shamsaei, N. Multiaxial Fatigue: An Overview and Some Approximation Models for Life Estimation. Int. J. Fatigue. 2011, 33(8), 948–958. DOI: 10.1016/j.ijfatigue.2011.01.003.
  • Lu, C.; Melendez, J.; Martínez-Esnaola, J. M. Fatigue Damage Prediction in Multiaxial Loading Using a New Energy-based Parameter. Int. J. Fatigue. 2017. DOI: 10.1016/j.ijfatigue.2017.07.018.
  • Fatemi, A.; Socie, D. F. A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-phase Loading. Fat. Frac. Eng. Mat. Struct. 1988, 11(3), 149–165. DOI: 10.1111/j.1460-2695.1988.tb01169.x.
  • Mars, W. V.; Fatemi, A. Nucleation and Growth of Small Fatigue Cracks in Filled Natural Rubber under Multiaxial Loading. J. Mater. Sci. 2006, 41(22), 7324–7332. DOI: 10.1007/s10853-006-0962-2.
  • Karolczuk, A.; Macha, E. A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials. Int. J. Fract. 2005, 134(3–4), 267–304. DOI: 10.1007/s10704-005-1088-2.
  • Kotte, K. L.; Hollmann, C. Zur Übertragbarkeit der Schwingfestigkeitseigenschaften im Örtlichen Konzept. Mat.-wiss. u. Werkstofftech. 2006, 37(10), 812–819. DOI: 10.1002/mawe.200600045.
  • Bergmann, J. W.; Heuler, P. Übertragbarkeit - ein zentrales Problem der Lebensdauervorhersage schwingbelasteter Bauteile. Mat.-wiss. u. Werkstofftech. 1994, 25(1), 3–10. DOI: 10.1002/mawe.19940250105.
  • Cicero, S.; Madrazo, V.; Carrascal, I. A. Analysis of Notch Effect in PMMA Using the Theory of Critical Distances. Eng. Fract. Mech. 2012, 86, 56–72. DOI: 10.1016/j.engfracmech.2012.02.015.
  • Susmel, L. The Theory of Critical Distances: A Review of Its Applications in Fatigue. Eng. Fract. Mech. 2008. DOI: 10.1016/j.engfracmech.2006.12.004.
  • Taylor, D. A Mechanistic Approach to Critical-distance Methods in Notch Fatigue. Fat. Frac. Eng. Mat. Struct. 2001, 24(4), 215–224. DOI: 10.1046/j.1460-2695.2001.00401.x.
  • Schneider, B.; Beber, V. C.; Brede, M. Estimation of the Lifetime of Bonded Joints under Cyclic Loads at Different Temperatures. J. Adhes. 2016, 92(7–9), 795–817. DOI: 10.1080/00218464.2015.1114928.
  • Beber, V. C.; Fernandes, P. H. E.; Schneider, B.; Brede, M.; Mayer, B. Fatigue Lifetime Prediction of Adhesively Bonded Joints: An Investigation of the Influence of Material Model and Multiaxiality. Int. J. Adhes. Adhes. 2017, 78, 240–247. DOI: 10.1016/j.ijadhadh.2017.08.007.
  • Beber, V. C.; Fernandes, P. H. E.; Fragato, J. E.; Schneider, B.; Brede, M. Influence of Plasticity on the Fatigue Lifetime Prediction of Adhesively Bonded Joints Using the Stress-life Approach. Appl. Adhes. Sci. 2016, 4(1), 26. DOI: 10.1186/s40563-016-0062-8.
  • Beber, V. C.; Schneider, B.; Brede, M. Efficient Critical Distance Approach to Predict the Fatigue Lifetime of Structural Adhesive Joints. Eng. Fract. Mech. 2019, 214, 365–377. DOI: 10.1016/j.engfracmech.2019.03.022.
  • Akhavan-Safar, A.; Da Silva, L. F. M.; Ayatollahi, M. R. An Investigation on the Strength of Single Lap Adhesive Joints with a Wide Range of Materials and Dimensions Using a Critical Distance Approach. Int. J. Adhes. Adhes. 2017, 78, 248–255. DOI: 10.1016/j.ijadhadh.2017.08.009.
  • Sousa, F. C.; Akhavan-Safar, A.; Goyal, R.; Da Silva, L. F. M. Fatigue Life Estimation of Single Lap Adhesive Joints Using a Critical Distance Criterion: An Equivalent Notch Approach. Mech. Mater. 2021, 153, 103670. DOI: 10.1016/j.mechmat.2020.103670.
  • Sousa, F. C.; Akhavan‐Safar, A.; Goyal, R.; Silva, L. F. M. The Influence of Mode Mixity and Adhesive System on the Fatigue Life of Adhesive Joints. Fatigue Fract. Eng. Mater. Struct. 2020, 43(10), 2337–2348. DOI: 10.1111/ffe.13301.
  • Cruz-G, C. E.; Akhavan-Safar, A.; Da Silva, L. F. M.; Ayatollahi, M. R. On the Evaluation of a Critical Distance Approach for Failure Load Prediction of Adhesively Bonded Dissimilar Materials. Contin. Mech. Thermodyn. 2020, 32(6), 1647–1657. DOI: 10.1007/s00161-020-00871-7.
  • Benedetti, M.; Fontanari, V.; Allahkarami, M.; Hanan, J. C.; Bandini, M. On the Combination of the Critical Distance Theory with a Multiaxial Fatigue Criterion for Predicting the Fatigue Strength of Notched and Plain Shot-peened Parts. Int. J. Fatigue. 2016, 93, 133–147. DOI: 10.1016/j.ijfatigue.2016.08.015.
  • Borges, R.; Araújo, J.; Silva, C.; Dias, J.; Ferreira, J. Generalization of the Theory of Critical Distance to Estimate Lifetime of Notched Components in the Medium-cycle Fatigue Regime. MATEC Web Conf. 2019, 300, 13001. DOI: 10.1051/matecconf/201930013001.
  • Liao, D.; Zhu, S.-P.; Qian, G. Multiaxial Fatigue Analysis of Notched Components Using Combined Critical Plane and Critical Distance Approach. Int. J. Mech. Sci. 2019, 160, 38–50. DOI: 10.1016/j.ijmecsci.2019.06.027.
  • Susmel, L.; Taylor, D. Can the Conventional High-Cycle Multiaxial Fatigue Criteria Be Re-Interpreted in Terms of the Theory of Critical Distances? Struct. Durab. Health Monit. 2006, 2, 91–108.
  • Susmel, L. Modified Wöhler Curve Method, Theory of Critical Distances and Eurocode 3: A Novel Engineering Procedure to Predict the Lifetime of Steel Welded Joints Subjected to Both Uniaxial and Multiaxial Fatigue Loading. Int. J. Fatigue. 2008, 30(5), 888–907. DOI: 10.1016/j.ijfatigue.2007.06.005.
  • Susmel, L. On the Overall Accuracy of the Modified Wöhler Curve Method in Estimating High-cycle Multiaxial Fatigue Strength. Frat. Integrita Strut. 2011, 5(16), 5–17. DOI: 10.3221/IGF-ESIS.16.01.
  • Luo, P.; Yao, W.; Susmel, L.; Li, P. Prediction Methods of Fatigue Critical Point for Notched Components under Multiaxial Fatigue Loading. Fatigue Fract. Eng. Mater. Struct. 2019, 42(12), 2782–2793. DOI: 10.1111/ffe.13116.
  • Gross, D.; Hauger, W.; Schröder, J.; Wall, W. A. Technische Mechanik 2: Springer-Lehrbuch; Springer Berlin Heidelberg, 2013.
  • Ward, I. M.; Sweeney, J. Mechanical Properties of Solid Polymers; John Wiley & Sons, 2012.
  • Chiminelli, A.; Breto, R.; Jiménez, M. A.; Velasco, F.; Abenojar, J.; Martínez, M. A. Experimental Method for the Determination of Material Parameters of Plasticity Models for Toughened Adhesives. Int. J. Adhes. Adhes. 2016, 68, 182–187. DOI: 10.1016/j.ijadhadh.2016.03.004.
  • Beber, V. C.; Baumert, M.; Klapp, O.; Nagel, C. Multiaxial Elastic, Yield and Failure Behaviour of Bonded Joints Using a Hot-curing Epoxy Film Adhesive: Analytical and Experimental Investigation. J. Adhes. 2020, 1–27. DOI: 10.1080/00218464.2020.1850285.
  • Mars, W. V.; Fatemi, A. Multiaxial Fatigue of Rubber: Part II: Experimental Observations and Life Predictions. Fatigue Fract. Eng. Mater. Struct. 2005. DOI: 10.1111/j.1460-2695.2005.00895.x.
  • Findley, W. N. A Theory for the Effect of Mean Stress on Fatigue of Metals under Combined Torsion and Axial Load or Bending. J. Eng. Indus. 1959, 81(4), 301–305. DOI: 10.1115/1.4008327.
  • Brown, M. W.; Miller, K. J. A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions. Proc. Inst. Mech. Eng. 1973, 187(1), 745–755. DOI: 10.1243/PIME_PROC_1973_187_161_02.
  • Petrucci, G. A Critical Assessment of Methods for the Determination of the Shear Stress Amplitude in Multiaxial Fatigue Criteria Belonging to Critical Plane Class. Int. J. Fatigue. 2015, 74, 119–131. DOI: 10.1016/j.ijfatigue.2015.01.001.
  • Bernasconi, A.; Papadopoulos, I. V. Efficiency of Algorithms for Shear Stress Amplitude Calculation in Critical Plane Class Fatigue Criteria. Comput. Mater. Sci. 2005, 34(4), 355–368. DOI: 10.1016/j.commatsci.2005.01.005.
  • Weber, B.; Kenmeugne, B.; Clement, J. C.; Robert, J. L. Improvements of Multiaxial Fatigue Criteria Computation for a Strong Reduction of Calculation Duration. Comput. Mater. Sci. 1999, 15(4), 381–399. DOI: 10.1016/s0927-0256(98)00129-3.
  • Araújo, J. A.; Dantas, A. P.; Castro, F. C.; Mamiya, E. N.; Ferreira, J. L. A. On the Characterization of the Critical Plane with a Simple and Fast Alternative Measure of the Shear Stress Amplitude in Multiaxial Fatigue. Int. J. Fatigue. 2011, 33(8), 1092–1100. DOI: 10.1016/j.ijfatigue.2011.01.002.
  • Castagnetti, D.; Spaggiari, A.; Dragoni, E. Effect of Bondline Thickness on the Static Strength of Structural Adhesives under Nearly-Homogeneous Shear Stresses. J. Adhes. 2011, 87(7–8), 780–803. DOI: 10.1080/00218464.2011.597309.
  • Spaggiari, A.; Castagnetti, D.; Dragoni, E. A Design Oriented Multiaxial Stress-based Criterion for the Strength Assessment of Adhesive Layers. Compos. B Eng. 2019, 157, 66–75. DOI: 10.1016/j.compositesb.2018.08.085.
  • Zhang, J.; Jiang, H.; Kang, G.; Jiang, C.; Lu, F. A New Form of Equivalent Stress for Combined Axial–torsional Loading considering the Tension–compression Asymmetry of Polymeric Materials. RSC Adv. 2015, 5(89), 72780–72784. DOI: 10.1039/c5ra15230e.
  • Meschut, G.; Teutenberg, D.; Cavdar, S.; Melz, T.; Rybar, G.; Mayer, B.; Fiedler, A. Analyse der Schwingfestigkeit geklebter Stahlverbindungen unter mehrkanaliger Belastung – MAyFAIr. In Forschung für die Praxis P1028, IGF-Nr. 18107 N, Forschungsvereinigung Stahlanwendung e.V. im Stahl-Zentrum; Heise, F.-J., Ed.; FOSTA, 2017.
  • Shenoy, V.; Ashcroft, I. A.; Critchlow, G. W.; Crocombe, A. D.; Abdel Wahab, M. M. An Evaluation of Strength Wearout Models for the Lifetime Prediction of Adhesive Joints Subjected to Variable Amplitude Fatigue. Int. J. Adhes. Adhes. 2009, 29(6), 639–649. DOI: 10.1016/j.ijadhadh.2009.02.008.
  • Kluger, K.; Łagoda, T. Modification of the Fatigue Life Calculation Algorithm for Criteria Based on the Critical Plane Concept. AIP Conf. Proc. 2016, 1780, 1–10. DOI: 10.1063/1.4965943.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.