187
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Experimental research on the compression failure of wind turbine blade trailing edge structure

ORCID Icon, , , , &
Pages 1488-1507 | Received 01 Jun 2022, Accepted 07 Sep 2022, Published online: 21 Sep 2022

References

  • Damkilde, L.; Lund, B. A Simplified Analysis of the Brazier Effect in Composite Beams. In Proceedings of the Nordic Seminar on Computational Mechanics,(NSCM), Göteborg, Sweden, 2007: Chalmers tekniska högskola.
  • Eder, M. A.; Bitsche, R. A Qualitative Analytical Investigation of Geometrically Nonlinear Effects in Wind Turbine Blade Cross Sections. Thin-Walled Struct. 2015, 93, 1–9. DOI: 10.1016/j.tws.2015.03.007.
  • Jensen, F. M.; Falzon, B. G.; Ankersen, J.; Stang, H. Structural Testing and Numerical Simulation of a 34m Composite Wind Turbine Blade. Compos. Struct. 2006, 76(1), 52–61. DOI: 10.1016/j.compstruct.2006.06.008.
  • Overgaard, L.; Lund, E.; Thomsen, O. T. Structural Collapse of a Wind Turbine Blade. Part A: Static Test and Equivalent Single Layered Models. Compos. Part A Appl. Sci. Manuf. 2010, 41(2), 257–270. DOI: 10.1016/j.compositesa.2009.10.011.
  • Overgaard, L. C. T.; Lund, E. Structural Collapse of a Wind Turbine Blade. Part B: Progressive Interlaminar Failure Models. Compos. Part A Appl. Sci. Manuf. 2010, 41(2), 271–283. DOI: 10.1016/j.compositesa.2009.10.012.
  • Chen, X.; Zhao, W.; Zhao, X. L.; Xu, J. Z. Preliminary Failure Investigation of a 52.3 M Glass/Epoxy Composite Wind Turbine Blade. Eng. Fail. Anal. 2014, 44, 345–350. DOI: 10.1016/j.engfailanal.2014.05.024.
  • Guo, Y.; Zhao, W.; Zhao, X. L.; Xu, J. Z. Structural Collapse Characteristics of a 48.8 M Wind Turbine Blade under Ultimate Bending Loading. Eng. Fail. Anal. 2019, 106, 104150. DOI: 10.1016/j.engfailanal.2019.104150.
  • Chen, X.; Eder, M. A. A Critical Review of Damage and Failure of Composite Wind Turbine Blade Structures. In IOP Conference Series Materials Science and Engineering, Roskilde, Denmark, 2020, vol. 942.
  • Ataya, S.; Ahmed, M. M. Damages of Wind Turbine Blade Trailing Edge: Forms, Location, and Root Causes. Eng. Fail. Anal. 2013, 35, 480–488. DOI: 10.1016/j.engfailanal.2013.05.011.
  • Haselbach, P. U.; Eder, M. A.; Belloni, F. A Comprehensive Investigation of Trailing Edge Damage in A Wind Turbine Rotor Blade. Wind Energy. 2016, 19(10), 1871–1888. DOI: 10.1002/we.1956.
  • Haselbach, P. U.; Branner, K. Initiation of Trailing Edge Failure in Full-Scale Wind Turbine Blade Test. Eng. Fract. Mech. 2016, 162, 136–154. DOI: 10.1016/j.engfracmech.2016.04.041.
  • Guo, Y.; Wang, J.; Huang, X.; Wei, X.; Liu, W. Structural Failure Test of a 52.5m Wind Turbine Blade under Combined Loading. Eng. Fail. Anal. 2019, 103, 286–293. DOI: 10.1016/j.engfailanal.2019.04.069.
  • Yang, J.; Peng, C.; Xiao, J.; Zeng, J.; Xing, S.; Jin, J.; Deng, H. Structural Investigation of Composite Wind Turbine Blade considering Structural Collapse in Full-Scale Static Tests. Compos. Struct. 2013, 97, 15–29. DOI: 10.1016/j.compstruct.2012.10.055.
  • Lee, H. G.; Park, J. Static Test until Structural Collapse after Fatigue Testing of a Full-Scale Wind Turbine Blade. Compos. Struct. 2016, 136, 251–257. DOI: 10.1016/j.compstruct.2015.10.007.
  • Raman, V.; Drissi-Habti, M. Macro and Meso-Scale Study in Composite Lay-Up Orientation Effect on Adhesive Material Used in Wind Turbine Blades. Rev. Compos. Mater. Adv. 2016, 26(1), 25–44.
  • Shmueli, J.; Eder, M. A.; Tesauro, A. A Versatile Stereo Photogrammetry Based Technique for Measuring Fracture Mode Displacements in Structures. Precis. Eng. 2015, 39, 38–46. DOI: 10.1016/j.precisioneng.2014.07.004.
  • van Leeuwen, H.; van Delft, D.; Heijdra, J.; Braam, H.; Jørgensen, E. R.; Lekou, D.; Vionis, P. Comparing Fatigue Strength from Full Scale Blade Tests with Coupon-Based Predictions. J. Sol. Energy Eng. 2002, 124(4), 404–411. DOI: 10.1115/1.1509463.
  • Dubinskii, S.; Safonov, A. Composite-Friendly Approach to Certification of Advanced Materials and Fabrication Methods Used in Aviation Industry. J. Mach. Manuf. Reliab. 2017, 46(5), 501–506. DOI: 10.3103/S1052618817050041.
  • Romano, F.; Sorrentino, A.; Pellone, L.; Mercurio, U.; Notarnicola, L. New Design Paradigms and Approaches for Aircraft Composite Structures. Multiscale Multidiscip. Model. Exp. Des. 2019, 2(2), 75–87. DOI: 10.1007/s41939-018-0034-8.
  • Carello, M.; Amirth, N.; Airale, A.; Monti, M.; Romeo, A. Building Block Approach for Structural Analysis of Thermoplastic Composite Components for Automotive Applications. Appl. Compos. Mater. 2017, 24(6), 1309–1320. DOI: 10.1007/s10443-017-9592-x.
  • Ji, Y. M.; Han, K. S. Fracture Mechanics Approach for Failure of Adhesive Joints in Wind Turbine Blades. Renew. Energy. 2014, 65(5), 23–28. DOI: 10.1016/j.renene.2013.07.004.
  • Myrent, N.; Adams, D. E.; Griffith, D. T. Wind Turbine Blade Shear Web Disbond Detection Using Rotor Blade Operational Sensing and Data Analysis. Philos. Trans. Royal Soc. A. 2015, 373(2035), 20140345. DOI: 10.1098/rsta.2014.0345.
  • Zarouchas, D. S.; Makris, A. A.; Sayer, F.; Hemelrijck, D. V.; Wingerde, A. Investigations on the Mechanical Behavior of a Wind Rotor Blade Subcomponent. Compos. Part B. 2012, 43(2), 647–654. DOI: 10.1016/j.compositesb.2011.10.009.
  • Tang, J.; Chen, X. Experimental Investigation on Ultimate Strength and Failure Response of Composite Box Beams Used in Wind Turbine Blades. Compos. Struct. 2018, 198, 19–34. DOI: 10.1016/j.compstruct.2018.05.042.
  • Chen, X.; Tang, J.; Yang, K. Modeling Multiple Failures of Composite Box Beams Used in Wind Turbine Blades. Compos. Struct. 2019, 217, 130–142. DOI: 10.1016/j.compstruct.2019.03.018.
  • Katnam, K.; Comer, A.; Roy, D.; Da Silva, L.; Young, T. Composite Repair in Wind Turbine Blades: An Overview. J. Adhes. 2015, 91(1–2), 113–139. DOI: 10.1080/00218464.2014.900449.
  • Qin, Z.; Yang, K.; Wang, J.; Zhang, L.; Huang, J.; Peng, H.; Xu, J. The Effects of Geometrical Dimensions on the Failure of Composite-To-Composite Adhesively Bonded Joints. J. Adhes. 2021, 97(11), 1024–1051.
  • Ji, Y. M.; Han, K. Fracture Mechanics Approach for Failure of Adhesive Joints in Wind Turbine Blades. Renew. Energy. 2014, 65, 23–28.
  • Leong, M.; Overgaard, L.; Thomsen, O. T.; Lund, E.; Da Niel, I. M. Investigation of Failure Mechanisms in GFRP Sandwich Structures with Face Sheet Wrinkle Defects Used for Wind Turbine Blades. Compos. Struct. 2012, 94(2), 768–778. DOI: 10.1016/j.compstruct.2011.09.012.
  • Budzik, M. K.; Wolfahrt, M.; Reis, P.; Kozłowski, M.; Sena-Cruz, J.; Papadakis, L.; Nasr Saleh, M.; Machalicka, K. V.; Teixeira de Freitas, S.; Vassilopoulos, A. P. Testing Mechanical Performance of Adhesively Bonded Composite Joints in Engineering Applications: An Overview. J. Adhes. 2021, 1–77. DOI: 10.1080/00218464.2021.1953479.
  • Branner, K.; Berring, P.; Haselbach, P. U. Subcomponent Testing of Trailing Edge Panels in Wind Turbine Blades. In Proceedings of 17th European Conference on Composite Materials, Munich, Germany, 2016, pp. 26–30.
  • Lahuerta, F.; Koorn, N.; Smissaert, D. Wind Turbine Blade Trailing Edge Failure Assessment with Sub-Component Test on Static and Fatigue Load Conditions. Compos. Struct. 2018, 204, 755–766.
  • Rosemeier, M.; Antoniou, A.; Chen, X.; Lahuerta, F.; Berring, P.; Branner, K. Trailing Edge Subcomponent Testing for Wind Turbine Blades–Part A: Comparison of Concepts. Wind Energy. 2019, 22(4), 487–498. DOI: 10.1002/we.2301.
  • Branner, K.; Berring, P.; Berggreen, C.; Knudsen, H. W. Torsional Performance of Wind Turbine Blades–Part II: Numerical Validation. In International Conference on Composite Materials (ICCM-16), Kyoto, Japan, 2007, pp. 8–13.
  • Eder, M. A.; Bitsche, R.; Nielsen, M.; Branner, K. A Practical Approach to Fracture Analysis at the Trailing Edge of Wind Turbine Rotor Blades. Wind Energy. 2014, 17(3), 483–497. DOI: 10.1002/we.1591.
  • Eder, M. A.; Bitsche, R. D.; Belloni, F. Effects of Geometric Non-Linearity on Energy Release Rates in a Realistic Wind Turbine Blade Cross Section. Compos. Struct. 2015, 132, 1075–1084. DOI: 10.1016/j.compstruct.2015.06.050.
  • Haselbach, P., Branner, K. Ultimate Strength of Wind Turbine Blades under Multiaxial Loading. In 9th European Academy of Wind Energy (EAWE) PhD seminar in Wind Energy in Europe, Gotland, Sweden, 2013. Technical University of Denmark.
  • Chen, X.; Berring, P.; Madsen, S. H.; Branner, K.; Semenov, S. Understanding Progressive Failure Mechanisms of a Wind Turbine Blade Trailing Edge Section through Subcomponent Tests and Nonlinear FE Analysis. Compos. Struct. 2019, 214, 422–438. DOI: 10.1016/j.compstruct.2019.02.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.