93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing the effect of a thickness gradient on the shear stress profile at the epoxy/silicone interface of thin coatings subjected to transverse shear loads with finite element analyses

, & ORCID Icon
Pages 2222-2237 | Received 26 Sep 2022, Accepted 10 Feb 2023, Published online: 22 Feb 2023

References

  • Martín-Rodríguez, A. J.; Babarro, J. M. F.; Lahoz, F.; Sansón, M.; Martín, V. S.; Norte, M.; Fernández, J. J. From Broad-Spectrum Biocides to Quorum Sensing Disruptors and Mussel Repellents: Antifouling Profile of Alkyl Triphenylphosphonium Salts. PLoS One. https://doi.org/10.1371/journal.pone.0123652 (2015).
  • Schultz, M. P.; Bendick, J. A.; Holm, E. R.; Hertel, W. M. Economic Impact of Biofouling on a Naval Surface Ship. Biofouling. 2011, 27(1), 87–98. https://doi.org/10.1080/08927014.2010.542809
  • Lejars, M.; Margaillan, A.; Bressy, C. Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chem. Rev. 2012, 112(8), 4347–4390. https://doi.org/10.1021/cr200350v
  • Maguire, R. J. Environmental Aspects of Tributyltin. Appl. Organomet. Chem. 1987, 1(6), 475–498. https://doi.org/10.1002/aoc.590010602
  • Alzieu, C. Impact of Tributyltin on Marine Invertebrates. Ecotoxicology. 2000, 9(1/2), 71–76. https://doi.org/10.1023/A:1008968229409
  • Anti-fouling Systems https://www.imo.org/en/OurWork/Environment/Pages/Anti-fouling.aspx (accessed Aug 1, 2022).
  • Burgess, J. G.; Boyd, K. G.; Armstrong, E.; Jiang, Z.; Yan, L.; Berggren, M.; May, U.; Pisacane, T.; Granmo, Å.; Adams, D. R. The Development of a Marine Natural Product-Based Antifouling Paint. Biofouling. 2003, 19(sup1), 197–205. https://doi.org/10.1080/0892701031000061778
  • Fusetani, N. Antifouling Marine Natural Products. Nat. Prod. Rep. https://doi.org/10.1039/c0np00034e (2011).
  • Kristensen, J. B.; Olsen, S. M.; Laursen, B. S.; Kragh, K. M.; Poulsen, C. H.; Besenbacher, F.; Meyer, R. L. Enzymatic Generation of Hydrogen Peroxide Shows Promising Antifouling Effect. Biofouling. https://doi.org/10.1080/08927010903384271 (2010).
  • Banerjee, I.; Pangule, R. C.; Kane, R. S. Antifouling Coatings: Recent Developments in the Design of Surfaces that Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Adv. Mater. 2011, 23, 690–718. https://doi.org/10.1002/adma.201001215.
  • Gittens, J. E.; Smith, T. J.; Suleiman, R.; Akid, R. Current and Emerging Environmentally-Friendly Systems for Fouling Control in the Marine Environment. Biotechnol. Adv. 2013, 31(8), 1738–1753. https://doi.org/10.1016/J.BIOTECHADV.2013.09.002.
  • Halvey, A. K.; Macdonald, B.; Dhyani, A.; Tuteja, A. Design of Surfaces for Controlling Hard and Soft Fouling. Philos. Trans. Royal Soc. A. https://doi.org/10.1098/rsta.2018.0266 (2019).
  • Hu, P.; Xie, Q.; Ma, C.; Zhang, G. Silicone-Based Fouling-Release Coatings for Marine Antifouling. Langmuir. https://doi.org/10.1021/acs.langmuir.9b03926 (2020).
  • Verma, S.; Das, S.; Mohanty, S.; Nayak, S. K.; Facile, A. Preparation of Epoxy-Polydimethylsiloxane (EP-PDMS) Polymer Coatings for Marine Applications. J. Mater. Res. https://doi.org/10.1557/jmr.2019.235 (2019).
  • Lee, C. H.; Kim, D. R.; Cho, I. S.; William, N.; Wang, Q.; Peel-and-Stick:, Z. X. Fabricating Thin Film Solar Cell on Universal Substrates. Sci. Rep. https://doi.org/10.1038/srep01000 (2012).
  • Gao, P.; Encapsulate-and-Peel:, Z. Q. Fabricating Carbon Nanotube CMOS Integrated Circuits in a Flexible Ultra-Thin Plastic Film. Nanotechnology. https://doi.org/10.1088/0957-4484/25/6/065301 (2014).
  • Fischer, S. C. L.; Kruttwig, K.; Bandmann, V.; Hensel, R.; Arzt, E. Adhesion and Cellular Compatibility of Silicone-Based Skin Adhesives. Macromol. Mater. Eng. https://doi.org/10.1002/mame.201600526 (2017).
  • Gleich, D. M.; Van Tooren, M. J. L.; Beukers, A. Analysis and Evaluation of Bondline Thickness Effects on Failure Load in Adhesively Bonded Structures. J. Adhes. Sci. Technol. https://doi.org/10.1163/156856101317035503 (2001).
  • Cognard, J. Y.; Créac’Hcadec, R.; Sohier, L.; Leguillon, D. Influence of Adhesive Thickness on the Behaviour of Bonded Assemblies under Shear Loadings Using a Modified TAST Fixture. Int. J. Adhes. Adhes. 2010, 30(5), 257–266. https://doi.org/10.1016/j.ijadhadh.2009.11.003.
  • Rośkowicz, M.; Godzimirski, J.; Komorek, A.; Jasztal, M. The Effect of Adhesive Layer Thickness on Joint Static Strength. Mater. (Basel). https://doi.org/10.3390/ma14061499 (2021).
  • Fitton, M. D.; Broughton, J. G. Variable Modulus Adhesives: An Approach to Optimised Joint Performance. Int. J. Adhes. Adhes. https://doi.org/10.1016/j.ijadhadh.2004.08.002 (2005).
  • da Silva, L. F. M.; Rodrigues, T. N. S. S.; Figueiredo, M. A. V.; de Moura, M. F. S. F.; Chousal, J. A. G. Effect of Adhesive Type and Thickness on the Lap Shear Strength. J. Adhes. https://doi.org/10.1080/00218460600948511 (2006).
  • Paroissien, E.; da Silva, L. F. M.; Lachaud, F. Simplified Stress Analysis of Functionally Graded Single-Lap Joints Subjected to Combined Thermal and Mechanical Loads. Compos. Struct. https://doi.org/10.1016/j.compstruct.2018.07.015 (2018).
  • Castagnetti, D.; Spaggiari, A.; Dragoni, E. Robust Shape Optimization of Tubular Butt Joints for Characterizing Thin Adhesive Layers under Uniform Normal and Shear Stresses. J. Adhes. Sci. Technol. https://doi.org/10.1163/016942410X507687 (2010).
  • Spaggiari, A.; Castagnetti, D.; Dragoni, E. Mixed-Mode Strength of Thin Adhesive Films: Experimental Characterization through a Tubular Specimen with Reduced Edge Effect. J. Adhes. https://doi.org/10.1080/00218464.2012.750243 (2013).
  • Kendall, J. The Adhesion and Surface Energy of Elastic Solids; 1971; Vol. 4. https://doi.org/10.1088/0022-3727/4/8/320.
  • Chaudhury, M. K.; Finlay, J. A.; Jun, Y. C.; Callow, M. E.; Callow, J. A. The Influence of Elastic Modulus and Thickness on the Release of the Soft-Fouling Green Alga Ulva Linza (Syn. Enteromorpha Linza) from Poly(Dimethylsiloxane) (PDMS) Model Networks. Biofouling. 2005, 21(1), 41–48. https://doi.org/10.1080/08927010500044377.
  • Singer, I. L.; Kohl, J. G.; Patterson, M. Mechanical Aspects of Silicone Coatings for Hard Foulant Control. Biofouling. 2000, 16(2–4), 301–309. https://doi.org/10.1080/08927010009378453.
  • Kohl, J.; Burke, A.; Landas, E. L. L.; Jacobitz, F. G. The Release Behavior of Silicone Coatings with a Thickness Gradient. Prog. Org. Coatings. 2007, 59, 278–283. https://doi.org/10.1016/j.porgcoat.2007.04.001.
  • Kim, J.; Chisholm, B. J.; Bahr, J. Adhesion Study of Silicone Coatings: The Interaction of Thickness, Modulus and Shear Rate on Adhesion Force. Biofouling. 2007, 23, 113–120. https://doi.org/10.1080/08927010701189708.
  • Chaudhury, M. K.; Kim, K. H. Shear-Induced Adhesive Failure of a Rigid Slab in Contact with a Thin Confined Film. Eur. Phys. J. E. 2007, 23(2), 175–183. https://doi.org/10.1140/epje/i2007-10171-x.
  • Kohl, J. G.; Malicky, D. M.; Jones, A. M.; McGee, S. L.; Purcell, C. Removal of Pseudobarnacles (Epoxy) from Silicone Coatings with a Thickness Gradient Due to an Applied Transverse Force. Prog. Org. Coatings. 2011, 71(3), 310–313. https://doi.org/10.1016/j.porgcoat.2011.03.024.
  • Malicky, M.; Kohl, D. J. G. Effect of Coating Thickness on the Stress Profile at the Epoxy/Silicone Interface Subjected to Pull-off Loading: A Finite Element Analysis. Int. J. Adhes. Adhes. 2017, 78, 216–221. https://doi.org/10.1016/j.ijadhadh.2017.08.001.
  • Hensel, R.; McMeeking, R. M.; Kossa, A. Adhesion of a Rigid Punch to a Confined Elastic Layer Revisited. J. Adhes. 2017. 1–20. https://doi.org/10.1080/00218464.2017.1381603.
  • Sun, X.; Yu, L.; Rentschler, M.; Wu, H.; Long, R. Delamination of a Rigid Punch from an Elastic Substrate under Normal and Shear Forces. J. Mech. Phys. Solids. 2019, 122, 141–160. https://doi.org/10.1016/J.JMPS.2018.09.009.
  • Huang, G.-Y.; Zhou, Y.-N. A Mechanical Model for the Detachment of Barnacles under Tangential Forces. Procedia Mater. Sci. https://doi.org/10.1016/j.mspro.2014.06.131 (2014).
  • Gibbons, M. M.; Kohl, J. G. Using Finite Element Analyses to Assess the Effect of a Thickness Gradient on the Stress Profile at the Epoxy/Silicone Interface of Thin Coatings Subjected to Pull-off Loading. Int. J. Adhes. Adhes. https://doi.org/10.1016/j.ijadhadh.2020.102686 (2020).
  • Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C. Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering. J. Micromech. Microeng. 2014, 24(3), 035017. https://doi.org/10.1088/0960-1317/24/3/035017.
  • Ribeiro, J. E.; Lopes, H.; Martins, P.; Mechanical, B.-C. M. Analysis of PDMS Using Biaxial Test. AIMS Mater. Sci. 2019, 6(1), 97–110.
  • Nunes, L. C. S. Mechanical Characterization of Hyperelastic Polydimethylsiloxane by Simple Shear Test. Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2010.11.025 (2011).
  • Goglio, L.; Rossetto, M.; Dragoni, E. Design of Adhesive Joints Based on Peak Elastic Stresses. Int. J. Adhes. Adhes. https://doi.org/10.1016/j.ijadhadh.2008.04.001 (2008).
  • Dragoni, E.; Goglio, L.; Kleiner, F. Designing Bonded Joints by Means of the JointCalc Software. International Journal of Adhesion and Adhesives. 2010, 30(5), 26–7280. https://doi.org/10.1016/j.ijadhadh.2009.11.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.