1,458
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of low temperatures and high strain rates on the tensile properties of polyurethane polymers for adhesives

, , ORCID Icon, , , , & show all
Pages 2238-2259 | Received 16 Dec 2022, Accepted 10 Feb 2023, Published online: 02 Mar 2023

References

  • Budzik, M. K.; Wolfahrt, M.; Reis, P.; Kozłowski, M.; Sena-Cruz, J.; Papadakis, L.; Saleh, M. N.; Machalicka, K. V.; de Freitas, S. T.; Vassilopoulos, A. P. Testing Mechanical Performance of Adhesively Bonded Composite Joints in Engineering Applications: An Overview. J. Adhes. 2022, 98(14), 2133–2209. DOI: 10.1080/00218464.2021.1953479.
  • Liu, Y.; Camegie, C.; Ascroft, H.; Li, W.; Han, X.; Guo, H.; Hughes, D. J. Investigation of Adhesive Joining Strategies for the Application of a Multi-Material Light Rail Vehicle. Mater. 2021, 14(22), 6991. DOI: 10.3390/ma14226991.
  • Ishikawa, T.; Amaoka, K.; Masubuchi, Y.; Yamamoto, T.; Yamanaka, A.; Arai, M.; Takahashi, J. Overview of Automotive Structural Composites Technology Developments in Japan. Compos. Sci. Technol. 2018, 155, 221–246. DOI: 10.1016/j.compscitech.2017.09.015.
  • Meschut, G.; Hahn, O.; Janzen, V.; Olfermann, T. Innovative Joining Technologies for multi-material Structures. Weld. World. 2013, 58, 65–75. DOI: 10.1007/s40194-013-0098-3.
  • Zinn, C.; Bobbert, M.; Dammann, C.; Wang, Z.; Tröster, T.; Mahnken, R.; Meschut, G.; Schaper, M. Shear Strength and Failure Behaviour of Laser nano-structured and Conventionally pre-treated Interfaces in Intrinsically Manufactured CFRP-steel Hybrids. Compos. B Eng. 2018, 151, 173–185. DOI: 10.1016/j.compositesb.2018.05.030.
  • Banea, M. D.; Da Silva, L. F. M. Adhesively Bonded Joints in Composite Materials: An Overview. Proc. Inst. Mech. Eng. Pt. L J. Mater. Des. Appl. 2009, 223(1), 1–18. DOI: 10.1243/14644207JMDA219.
  • Banea, M. D.; Rosioara, M.; Carbas, R. J. C.; da Silva, L. F. M. Multi-material Adhesive Joints for Automotive Industry. Compos. B Eng. 2018, 151, 71–77. DOI: 10.1016/j.compositesb.2018.06.009.
  • Sensui, K.; Tarui, T.; Sato, C. Effect of Solvent Used for Isocyanate Primer on Interphase Formation. J. Adhes. 2021, 97(16), 1473–1485. DOI: 10.1080/00218464.2020.1789460.
  • Avendaño, R.; Carbas, R. J. C.; Chaves, F. J. P.; Costa, M.; da Silva, L. F. M.; Fernandes, A. A. Impact Loading of Single Lap Joints of Dissimilar Lightweight Adherends Bonded with a crash-resistant Epoxy Adhesive. J. Eng. Mater. Technol. 2016, 138(4), 041019. DOI: 10.1115/1.4034204.
  • Machado, J. J. M.; Marques, E. A. S.; da Silva, L. F. M. Influence of Low and High Temperature on Mixed Adhesive Joints under quasi-static and Impact Conditions. Compos. Struct. 2018, 194, 68–79. DOI: 10.1016/j.compstruct.2018.03.093.
  • Machado, J. J. M.; Nunes, P. D. P.; Marques, E. A. S.; da Silva, L. F. M. Adhesive Joints Using Aluminium and CFRP Substrates Tested at Low and High Temperatures under quasi-static and Impact Conditions for the Automotive Industry. Compos. B Eng. 2019, 158, 102–116. DOI: 10.1016/j.compositesb.2018.09.067.
  • Machado, J. J. M.; Marques, E. A. S.; da Silva, L. F. M. Mechanical Behaviour of Adhesively Bonded Composite Single Lap Joints under quasi-static and Impact Conditions with Variation of Temperature and Overlap. J. Compos. Mater. 2018, 52(26), 3621–3635. DOI: 10.1177/0021998318766641.
  • Rosendo, D.; Viana, G.; Carbas, R.; Marques, E.; da Silva, L. F. M. Effect of Temperature and Moisture on the Impact Behavior of Adhesive Joints for the Automotive Industry. J. Appl. Comput. Mech. 2021, 7(3), 1488–1500. DOI: 10.22055/JACM.2021.36089.2793.
  • Machado, J. J. M.; Marques, E. A. S.; da Silva, L. F. M. Adhesives and Adhesive Joints under Impact Loadings: An Overview. J. Adhes. 2018, 94(6), 421–452. DOI: 10.1080/00218464.2017.1282349.
  • Blackman, B. R. K.; Kinloch, A. J.; Taylor, A. C.; Wang, Y. The Impact wedge-peel Performance of Structural Adhesives. J. Mater. Sci. 2000, 35, 1867–1884. DOI: 10.1023/A:1004793730352.
  • Blackman, B. R. K.; Dear, J. P.; Kinloch, A. J.; Macgillivray, H.; Wang, Y.; Williams, J. G.; Yayla, P. The Failure of Fibre Composites and Adhesively Bonded Fibre Composites under High Rates of Test. J. Mater. Sci. 1995, 30, 5885–5900. DOI: 10.1007/BF01151502.
  • Sekiguchi, Y.; Sato, C. Experimental Investigation of the Effects of Adhesive Thickness on the Fracture Behavior of Structural Acrylic Adhesive Joints under Various Loading Rates. Int. J. Adhes. Adhes. 2021, 105, 102782. DOI: 10.1016/j.ijadhadh.2020.102782.
  • Jhin, G.; Azari, S.; Ameli, A.; Datla, N. V.; Papini, M.; Spelt, J. K. Crack Growth Rate and Crack Path in Adhesively Bonded Joints: Comparison of Creep, Fatigue and Fracture. Int. J. Adhes. Adhes. 2013, 46, 74–84. DOI: 10.1016/j.ijadhadh.2013.05.009.
  • Banea, M. D.; Da Silva, L. F. M.; Campilho, R. D. S. G. Effect of Temperature on Tensile Strength and Mode I Fracture Toughness of a High Temperature Epoxy Adhesive. J. Adhes. Sci. Technol. 2012, 26, 939–953. DOI: 10.1163/156856111X593649.
  • Kadioglu, F.; Adams, R. D. Flexible Adhesives for Automotive Application under Impact Loading. Int. J. Adhes. Adhes. 2015, 56, 73–78. DOI: 10.1016/j.ijadhadh.2014.08.001.
  • Yokoyama, T.; Nakai, K. Determination of the Impact Tensile Strength of Structural Adhesive Butt Joints with a Modified Split Hopkinson Pressure Bar. Int. J. Adhes. Adhes. 2015, 56, 13–23. DOI: 10.1016/j.ijadhadh.2014.07.011.
  • Challita, G.; Othman, R.; Casari, P.; Khalil, K. Experimental Investigation of the Shear Dynamic Behavior of double-lap Adhesively Bonded Joints on a Wide Range of Strain Rates. Int. J. Adhes. Adhes. 2011, 31(3), 146–153. DOI: 10.1016/j.ijadhadh.2010.11.014.
  • Araújo, H. A. M.; Machado, J. J. M.; Marques, E. A. S.; da Silva, L. F. M. Dynamic Behavior of Composite Adhesive Joints for the Automotive Industry. Compos. Struct. 2017, 171, 549–561. DOI: 10.1016/j.compstruct.2017.03.071.
  • Machado, J. J. M.; Gamarra, P. M. R.; Marques, E. A. S.; da Silva, L. F. M. Improvement in Impact Strength of Composite Joints for the Automotive Industry. Compos. B Eng. 2018, 138, 243–255. DOI: 10.1016/j.compositesb.2017.11.038.
  • Dos Reis, M.; Carbas, R.; Marques, E.; da Silva, L. Functionally Graded Adhesive Joints under Impact Loads. Proc. Inst. Mech. Eng. Pt. D J. Automobile Eng. 2021, 235(13), 3270–3281. DOI: 10.1177/09544070211004505.
  • Banea, M. D.; Da Silva, L. F. M. The Effect of Temperature on the Mechanical Properties of Adhesive for the Automotive Industry. Proc. Inst. Mech. Eng. Pt. L J. Mater. Des. Appl. 2010, 224(2), 51–62. DOI: 10.1243/14644207JMDA283.
  • Sekiguchi, Y.; Yamagata, Y.; Sato, C. Mode I Fracture Energy of Adhesive Joints Bonded with Adhesives with Different Characteristics under quasi-static and Impact Loading. J. Adhes. Soc. Jpn. 2017, 53, 330–337. DOI: 10.11618/adhesion.53.330.
  • Ernault, E.; Diani, J.; Schmid, Q. Single-lap Joint Creep Behaviour of Two Soft Adhesives. J. Adhes. Online First version. 2022. DOI: 10.1080/00218464.2022.2100254.
  • Yamagata, Y.; Lu, X.; Sekiguchi, Y.; Sato, C. Experimental Investigation of Mode I Fracture Energy of Adhesively Bonded Joints under Impact Loading Conditions. Appl. Adhes. Sci. 2017, 5, 7. DOI: 10.1186/s40563-017-0087-7.
  • Jia, Z.; Yuan, G.; Hui, D.; Feng, X.; Zou, Y. Effect of High Strain Rate and Low Temperature on Mode II Fracture Toughness of Ductile Adhesive. Int. J. Adhes. Adhes. 2018, 86, 105–112. DOI: 10.1016/j.ijadhadh.2018.09.003.
  • Jia, Z.; Yuan, G.; Feng, X.; Zou, Y.; Yu, J. Shear Properties of Polyurethane Ductile Adhesive at Low Temperatures under High Strain Rate Conditions. Compos. B Eng. 2019, 156, 292–302. DOI: 10.1016/j.compositesb.2018.08.060.
  • Kumpenza, C.; Pramreiter, M.; Nenning, T. J.; Bliem, P.; Reiterer, R.; Konnerth, J.; Müller, U. Temperature-related Tensile Modulus of polymer-based Adhesive Films. J. Adhes. 2023, 99(2), 259–276. DOI: 10.1080/00218464.2021.2011239.
  • Zhang, L. H.; Yao, X. H.; Zang, S. G.; Han, Q. Temperature and Strain Rate Dependent Tensile Behavior of a Transparent Polyurethane Interlayer. Mater. Des. 2015, 65, 1181–1188. DOI: 10.1016/j.matdes.2014.08.054.
  • Jia, Z.; Yuan, G.; Ma, H.; Hui, D.; Lau, K. Tensile Properties of a polymer-based Adhesive at Low Temperature with Different Strain Rates. Compos. B Eng. 2016, 87, 227–232. DOI: 10.1016/j.compositesb.2015.10.013.
  • Wang, H.; Deng, X.; Wu, H.; Pi, A.; Li, J.; Huang, F. Investigating the Dynamic Mechanical Behaviors of Polyurea through Experimentation and Modeling. Defence Technol. 2019, 15(6), 875–884. DOI: 10.1016/j.dt.2019.04.016.
  • Machado, J. J. M.; Hayashi, A.; Nunes, P. D. P.; Marques, E. A. S.; Carbas, R. J. C.; Sato, C.; Da Silva, L. F. M. Strain Rate Dependence of a Crash Resistant Adhesive as a Function of Temperature for the Automotive Industry. Proc. Inst. Mech. Eng. Pt. L J. Mater. Des. Appl. 2019, 233(11), 2189–2203. DOI: 10.1177/1464420719836914.
  • Liao, Z.; Yao, X.; Zhang, L.; Hossain, M.; Wang, J.; Zang, S. Temperature and Strain Rate Dependent Large Tensile Deformation and Tensile Failure Behavior of Transparent Polyurethane at Intermediate Strain Rates. Int. J. Impact Eng. 2019, 129, 152–167. DOI: 10.1016/j.ijimpeng.2019.03.005.
  • Roland, C. M.; Twigg, J. N.; Vu, Y.; Mott, P. H. High Strain Rate Mechanical Behavior of Polyurea. Polym. 2007, 48(2), 574–578. DOI: 10.1016/j.polymer.2006.11.051.
  • Šebenik, U.; Krajnc, M. Influence of the Soft Segment Length and Content on the Synthesis and Properties of isocyanate-terminated Urethane Prepolymers. Int. J. Adhes. Adhes. 2007, 27(7), 527–535. DOI: 10.1016/j.ijadhadh.2006.10.001.
  • Wongsamut, C.; Suwanpreedee, R.; Manuspiya, H. Thermoplastic polyurethane-based Polycarbonate Diol Hot Melt Adhesives: The Effect of hard-soft Segment Ratio on Adhesion Properties. Int. J. Adhes. Adhes. 2020, 102, 102677. DOI: 10.1016/j.ijadhadh.2020.102677.
  • McCreath, S.; Boinard, P.; Boinard, E.; Gritter, P.; Liggat, J. J. High Clarity Poly(caprolactone Diol)-based Polyurethane Adhesives for Polycarbonate Lamination: Effect of Isocyanate and chain-extender. Int. J. Adhes. Adhes. 2018, 86, 84–97. DOI: 10.1016/j.ijadhadh.2018.08.003.
  • Yi, J.; Boyce, M. C.; Lee, G. F.; Balizer, E. Large Deformation rate-dependent stress–strain Behavior of Polyurea and Polyurethanes. Polym. 2006, 47(1), 319–329. DOI: 10.1016/j.polymer.2005.10.107.
  • Somarathna, H. M. C. C.; Raman, S. N.; Mohotti, D.; Mutalib, A. A.; Badri, K. H. Rate Dependent Tensile Behavior of Polyurethane under Varying Strain Rates. Constr. Build. Mater. 2020, 254, 119203. DOI: 10.1016/j.conbuildmat.2020.119203.
  • Pan, Z.; Sun, B.; Shim, V. P. W.; Gu, B. Transient Heat Generation and thermo-mechanical Response of Epoxy Resin under Adiabatic Impact Compressions. Int. J. Heat Mass Transfer. 2016, 95, 874–889. DOI: 10.1016/j.ijheatmasstransfer.2015.12.072.
  • Delpech, M. C.; Coutinho, F. M. B. Waterborne Anionic Polyurethanes and poly(urethane-urea)s: Influence of the Chain Extender on Mechanical and Adhesive Properties. Polym. Test. 2000, 19(8), 939–952. DOI: 10.1016/S0142-9418(99)00066-5.