219
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of drying conditions on adhesion strength of a pressure-sensitive adhesive

, ORCID Icon & ORCID Icon
Pages 34-62 | Received 21 Nov 2022, Accepted 09 Mar 2023, Published online: 16 Mar 2023

References

  • Peykova, P. Y.; Guriyanova, S.; Lebedeva, O. V.; Diethert, A.; Müller-Buschbaum, P.; Willenbacher, N. The Effect of Surface Roughness on Adhesive Properties of Acrylate Copolymers. Int. J. Adhes Adhes. 2010, 30, 245–254. DOI: 10.1016/j.ijadhadh.2010.02.005.
  • Lee, J. H.; Lee, D. W. Contact-Induced Molecular Rearrangement of Acrylic Acid-Incorporated Pressure Sensitive Adhesives. Appl. Surf. Sci. 2020, 500, 144246. DOI: 10.1016/j.apsusc.2019.144246.
  • Ahmadi-Dehnoei, A.; Ghasemirad, S. Designing of Desired Nanocomposite Pressure-Sensitive Adhesives Through Tailoring the Structural Characteristics of Polysilsesquioxane-Acrylic Core-Shell Nanoparticles. Int. J. Adhes. Adhes. 2021, 111, 102973. DOI: 10.1016/j.ijadhadh.2021.102973.
  • Makepeace, D. K.; Fortini, A.; Markov, A.; Locatelli, P.; Lindsay, C.; Moorhouse, S.; Lind, R.; Sear, R. P.; Keddie, J. L. Stratification in Binary Colloidal Polymer Films: Experiment and Simulations. Soft Matter. 2017, 13, 6969–6980. DOI: 10.1039/C7SM01267E.
  • Ghasemirad, S.; Mohammadi, N. Active Layer Thickness Across the Crack Plane and Fracture Energy Consumption in Polymer Nanocomposites: Adhesion Against Tear Strength. R.S.C. Adv. 2015, 5, 107642–107651. DOI: 10.1039/C5RA21937J.
  • Ahmadi‐dehnoei, A.; Ghasemirad, S. Tuning Adhesion Performance of an Acrylic Pressure‐sensitive Adhesive Using Polysilsesquioxane‐acrylic Core‐shell Nanoparticles. J. Appl. Polym. Sci. 2022, 139, 1–19. DOI: 10.1002/app.52429.
  • Khosravi, A.; King, J. A.; Jamieson, H. L.; Lind, M. L. Latex Barrier Thin Film Formation on Porous Substrates. Langmuir. 2014, 30, 13994–14003. DOI: 10.1021/la502812d.
  • Carter, F. T.; Kowalczyk, R. M.; Millichamp, I.; Chainey, M.; Keddie, J. L. Correlating Particle Deformation with Water Concentration Profiles During Latex Film Formation: Reasons That Softer Latex Films Take Longer to Dry. Langmuir. 2014, 30, 9672–9681. DOI: 10.1021/la5023505.
  • Khoubi-Arani, Z.; Mohammadi, N.; Ghasemirad, S. Concurrent Determination of Two Opposite Phase Transitions in a Soft Polymer Nanocomposite by Rheology and Their Theoretical Evaluations. Eur. Polym. J. 2016, 84, 40–53. DOI: 10.1016/j.eurpolymj.2016.09.008.
  • Ahmadi-Dehnoei, A.; Ghasemirad, S. Introducing Water-Redispersible Powderable Acrylic Adhesives Using Persian Gum. Ind. Crop Prod. 2021, 173C. DOI: 10.1016/j.indcrop.2021.114083.
  • Niinivaara, E.; Ouzas, A.; Fraschini, C.; Berry, R. M.; Dubé, M. A.; Cranston, E. D. How Latex Film Formation and Adhesion at the Nanoscale Correlate to Performance of Pressure Sensitive Adhesives with Cellulose Nanocrystals. Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 2021, 379, 379. DOI: 10.1098/rsta.2020.0330.
  • Wahdat, H.; Hirth, C.; Johannsmann, D.; Gerst, M.; Rückel, M.; Adams, J. Film Formation of Pressure-Sensitive Adhesives (PSAs) Studied with Förster Resonance Energy Transfer (FRET) and Scattering Intensity. Macromolecules. 2018, 51, 4718–4726. DOI: 10.1021/acs.macromol.8b00423.
  • Van Der Kooij, H. M.; Van De Kerkhof, G. T.; Sprakel, J. A Mechanistic View of Drying Suspension Droplets. Soft Matter. 2016, 12, 2858–2867. DOI: 10.1039/c5sm02406d.
  • Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops. Nature. 1997, 389, 827–829. DOI: 10.1038/39827.
  • Roman, B.; Bico, J. Elasto-Capillarity: Deforming an Elastic Structure with a Liquid Droplet. J. Phys. Condens. Matter. 2010, 22, 22. DOI: 10.1088/0953-8984/22/49/493101.
  • Routh, A. F.; Russel, W. B. A Process Model for Latex Film Formation: Limiting Regimes for Individual Driving Forces. Langmuir. 1999, 15, 7762–7773. DOI: 10.1021/la9903090.
  • Routh, A. F.; Russel, W. B. Deformation Mechanisms During Latex Film Formation: Experimental Evidence. Ind. Eng. Chem. Res. 2001, 40, 4302–4308. DOI: 10.1021/ie001070h.
  • López, A. B.; De La Cal, J. C.; Asua, J. M. Controlling Film Topography to Form Highly Hydrophobic Waterborne Coatings. Soft Matter. 2016, 12, 7005–7011. DOI: 10.1039/c6sm01081d.
  • Gonzalez, E.; Paulis, M.; Barandiaran, M. J.; Keddie, J. L. Use of a Routh-Russel Deformation Map to Achieve Film Formation of a Latex with a High Glass Transition Temperature. Langmuir. 2013, 29, 2044–2053. DOI: 10.1021/la3049967.
  • Ma, Y.; Davis, H. T.; Scriven, L. E. Microstructure Development in Drying Latex Coatings. Prog. Org. Coatings. 2005, 52, 46–62. DOI: 10.1016/j.porgcoat.2004.07.023.
  • Routh, A. F.; Zimmerman, W. B. Distribution of Particles During Solvent Evaporation from Films. Chem. Eng. Sci. 2004, 59(14), 2961–2968. DOI: 10.1016/j.ces.2004.04.027.
  • Ekanayake, P.; McDonald, P. J.; Keddie, J. L. An Experimental Test of the Scaling Prediction for the Spatial Distribution of Water During the Drying of Colloidal Films. Eur. Phys. J. Spec. Top. 2009, 166, 21–27. DOI: 10.1140/epjst/e2009-00872-4.
  • Keddie, J. L.; Routh, A. F. Fundamentals of Latex Film Formation; Springer Laboratory. Springer: Netherlands: Dordrecht, 2010. DOI: 10.1007/978-90-481-2845-7.
  • Gent, A. N.; Schultz, J. Effect of Wetting Liquids on the Strength of Adhesion of Viscoelastic Materials. J. Adhes. 1972, 3(4), 281–294. DOI: 10.1080/00218467208072199.
  • Andrews, E. H.; Kinloch, A. J. Mechanics of Adhesive Failure. II. Proc R Soc London a Math Phys Sci. 1973, 332, 401–414. DOI:10.1098/rspa.1973.0033.
  • Chopin, J.; Villey, R.; Yarusso, D.; Barthel, E.; Creton, C.; Ciccotti, M. Nonlinear Viscoelastic Modeling of Adhesive Failure for Polyacrylate Pressure-Sensitive Adhesives. Macromolecules. 2018, 51, 8605–8610. DOI: 10.1021/acs.macromol.8b01374.
  • Strawhecker, K. E.; Kumar, S. K.; Douglas, J. F.; Karim, A. The Critical Role of Solvent Evaporation on the Roughness of Spin-Cast Polymer Films. Macromolecules. 2001, 34, 4669–4672. DOI: 10.1021/ma001440d.
  • Stanley, S. K.; Ellison, C. J.; Bonnecaze, R. T. Control of Marangoni-Driven Patterning by an Optimized Distribution of Surface Energy. J. Appl. Phys. 2020, 127, 127. DOI: 10.1063/1.5132360.
  • Katzenstein, J. M.; Janes, D. W.; Cushen, J. D.; Hira, N. B.; McGuffin, D. L.; Prisco, N. A.; Ellison, C. J. Patterning by Photochemically Directing the Marangoni Effect. ACS Macro. Lett. 2012, 1, 1150–1154. DOI: 10.1021/mz300400p.
  • Guo, L.; Jiang, Y.; Chen, S.; Qiu, T.; Li, X. Self-Assembly of Poly(methacrylic Acid)-B-Poly(butyl Acrylate) Amphiphilic Block Copolymers in Methanol via RAFT Polymerization and During Film Formation for Wrinkly Surface Pattern. Macromolecules. 2014, 47, 165–174. DOI: 10.1021/ma402167d.
  • Chan, E. P.; Smith, E. J.; Hayward, R. C.; Crosby, A. J. Surface Wrinkles for Smart Adhesion. Adv. Mater. 2008, 20, 711–716. DOI: 10.1002/adma.200701530.
  • Evans, J. R. G.; Packham, D. E. Adhesion of Polyethylene to Metals: The Role of Surface Topography. J. Adhes. 1979, 10, 177–191. DOI: 10.1080/00218467908544624.
  • Kinloch, A. J. Adhesion and Adhesives; SpringerDordrecht: Netherlands, 1987. DOI: 10.1007/978-94-015-7764-9.
  • Mohammadi, H.; Mohammadi, N. Fracture of Polymer Blends: Effect of Characteristic Number of Interfacial Entanglements and Matrix Toughness. Polymer. 2012, 53, 2769–2776. DOI: 10.1016/j.polymer.2012.04.034.
  • Ghasemirad, S.; Mohammadi, N. How Do Soft Nanoparticles Affect Temperature-Induced Nonlinearity of a UCST Copolymer Blend? Colloid. Polym. Sci. 2015, 293, 677–686. DOI: 10.1007/s00396-014-3446-y.
  • Zhao, Q.; Lee, D. W.; Ahn, B. K.; Seo, S.; Kaufman, Y.; Israelachvili, J. N.; Waite, J. H. Underwater Contact Adhesion and Microarchitecture in Polyelectrolyte Complexes Actuated by Solvent Exchange. Nat. Mater. 2016, 15, 407–412. DOI: 10.1038/nmat4539.
  • Iqbal, H. M. S.; Bhowmik, S.; Benedictus, R. Surface Modification of High Performance Polymers by Atmospheric Pressure Plasma and Failure Mechanism of Adhesive Bonded Joints. Int. J. Adhes. Adhes. 2010, 30, 418–424. DOI: 10.1016/j.ijadhadh.2010.02.007.
  • Owens, D. K.; Wendt, R. C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. DOI: 10.1002/app.1969.070130815.
  • Żenkiewicz, M. Methods for the Calculation of Surface Free Energy of Solids. J. Achiev. Mater. Manuf. Eng. 2007, 24, 137–145.
  • Hamm, E.; Reis, P.; LeBlanc, M.; Roman, B.; Cerda, E. Tearing as a Test for Mechanical Characterization of Thin Adhesive Films. Nat. Mater. 2008, 7, 386–390. DOI: 10.1038/nmat2161.
  • Oh, J. K.; Wu, J.; Winnik, M. A.; Craun, G. P.; Rademacher, J.; Farwaha, R. Emulsion Copolymerization of Vinyl Acetate and Butyl Acrylate in the Presence of Fluorescent Dyes. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 1594–1607. DOI: 10.1002/pola.10216.
  • Emlie, B.; Pichot, C.; Guillot, J. Batch Emulsion Copolymerization of Butyl Acrylate and Methyl Methacrylate in the Presence of Sodium Dodecyl Sulfate. Die Makromol. Chemie. 1991, 192, 1629–1647. DOI: 10.1002/macp.1991.021920716.
  • Lacerda, P. S. S.; Barros-Timmons, A. M. M. V.; Freire, C. S. R.; Silvestre, A. J. D.; Neto, C. P. Nanostructured Composites Obtained by ATRP Sleeving of Bacterial Cellulose Nanofibers with Acrylate Polymers. Biomacromolecules. 2013, 14, 2063–2073. DOI: 10.1021/bm400432b.
  • Divry, V.; Gromer, A.; Nassar, M.; Lambour, C.; Collin, D.; Holl, Y. Drying Mechanisms in Plasticized Latex Films: Role of Horizontal Drying Fronts. J. Phys. Chem B. 2016, 120, 6791–6802. DOI: 10.1021/acs.jpcb.6b03009.
  • Caquineau, H.; Menut, P.; Deratani, A.; Dupuy, C. Influence of the Relative Humidity on Film Formation by Vapor Induced Phase Separation. Polym. Eng. Sci. 2003, 43, 798–808. DOI: 10.1002/pen.10066.
  • Kimber, J. A.; Gerst, M.; Kazarian, S. G. Fast Drying and Film Formation of Latex Dispersions Studied with FTIR Spectroscopic Imaging. Langmuir. 2014, 30, 13588–13595. DOI: 10.1021/la5035257.
  • Pérez-Díaz, J. L.; Álvarez-Valenzuela, M. A.; García-Prada, J. C. The Effect of the Partial Pressure of Water Vapor on the Surface Tension of the Liquid Water-Air Interface. J. Colloid. Interface. Sci. 2012, 381, 180–182. DOI: 10.1016/j.jcis.2012.05.034.
  • Chen, X.; Fischer, S.; Men, Y. Temperature and Relative Humidity Dependency of Film Formation of Polymeric Latex Dispersions. Langmuir. 2011, 27, 12807–12814. DOI: 10.1021/la202300p.
  • Routh, A. F. Drying of Thin Colloidal Films. Reports Prog. Phys. 2013, 76, 76. DOI: 10.1088/0034-4885/76/4/046603.
  • Bassou, N.; Rharbi, Y. Role of Bénard-Marangoni Instabilities During Solvent Evaporation in Polymer Surface Corrugations. Langmuir. 2009, 25, 624–632. DOI: 10.1021/la802979a.
  • The Engineering Toolbox. Water - Thermal Diffusivity vs. Temperature and Pressure. 2018. https://www.engineeringtoolbox.com/water-steam-thermal-diffusivity-d_2058.html (accessed Feb 9, 2022).
  • Gençer, A.; Schütz, C.; Thielemans, W. Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films. Langmuir. 2017, 33, 228–234. DOI: 10.1021/acs.langmuir.6b03724.
  • Fowler, P. D.; Ruscher, C.; McGraw, J. D.; Forrest, J. A.; Dalnoki-Veress, K. Controlling Marangoni-Induced Instabilities in Spin-Cast Polymer Films: How to Prepare Uniform Films. Eur. Phys. J. E. 2016, 39, 39. DOI: 10.1140/epje/i2016-16090-9.
  • Keddie, J. L.; Meredith, P.; Jones, R. A. L.; Donald, A. M. Kinetics of Film Formation in Acrylic Latices Studied with Multiple-Angle-Of-Incidence Ellipsometry and Environmental SEM. Macromolecules. 1995, 28, 2673–2682. DOI: 10.1021/ma00112a012.
  • Packham, D. E. Surface Energy, Surface Topography and Adhesion. Int. J. Adhes. Adhes. 2003, 23, 437–448. DOI: 10.1016/S0143-7496(03)00068-X.
  • Stein, G. E.; Laws, T. S.; Verduzco, R. Tailoring the Attraction of Polymers Toward Surfaces. Macromolecules. 2019, 52, 4787–4802. DOI: 10.1021/acs.macromol.9b00492.
  • Gardner, D. J.; Blumentritt, M.; Wang, L.; Yildirim, N. Adhesion Theories in Wood Adhesive Bonding. Rev. Adhes. Adhes. 2014. DOI: 10.7569/RAA.2014.097304.
  • Chiche, A.; Pareige, P.; Creton, C. Role of Surface Roughness in Controlling the Adhesion of a Soft Adhesive on a Hard Surface. Comptes Rendus l’Academie des. Sci - Ser IV Physics, Astrophys. 2000, 1, 1197–1204. DOI: 10.1016/S1296-2147(00)01133-1.
  • Guo, Q.; Chen, J.; Wang, J.; Zeng, H.; Yu, J. Recent Progress in Synthesis and Application of Mussel-Inspired Adhesives. Nanoscale. 2020, 12, 1307–1324. DOI: 10.1039/c9nr09780e.
  • Bae, W. G.; Kim, D.; Suh, K. Y. Instantly Switchable Adhesion of Bridged Fibrillar Adhesive via Gecko-Inspired Detachment Mechanism and Its Application to a Transportation System. Nanoscale. 2013, 5, 11876–11884. DOI: 10.1039/c3nr02008h.
  • Tian, H.; Liu, H.; Shao, J.; Li, S.; Li, X.; Chen, X. An Electrically Active Gecko-Effect Soft Gripper Under a Low Voltage by Mimicking Gecko’s Adhesive Structures and Toe Muscles. Soft Matter. 2020, 16, 5599–5608. DOI: 10.1039/d0sm00787k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.