187
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Parametric investigation of bonded composite joints under Mode II using a new methodology based on design of experiments

, , , &
Pages 791-812 | Received 27 Jul 2023, Accepted 07 Sep 2023, Published online: 13 Sep 2023

References

  • Budzik, M. K.; Wolfahrt, M.; Reis, P.; Kozlowski, M.; Cruz, J. S.; Papadaks, L.; Saleh, M. N.; Machalicka, K. V.; Freitas, S. T.; Vassilopoulos, A. P. Testing Mechanical Performance of Adhesively Bonded Composite Joints in Engineering Applications: An Overview. J. Adhes. 2021, 98(14), 2133–2209. DOI: 10.1080/00218464.2021.1953479.
  • Silva, L. F. M.; Öchsner, A.; Adams, R. D., Ed. Handbook of Adhesion Technology, 2nded.; p. 1805. 2018. 10.1007/978-3-319-55411-2
  • Naat, N.; Boutar, Y.; Naïmi, S.; Mezlini, S.; Silva, L. F. M. Effect of Surface Texture on the Mechanical Performance of Bonded Joints: A Review. J. Adhes. 2021, 99(2), 166–258. DOI: 10.1080/00218464.2021.2008370.
  • Omairey, S.; Jayasree, N.; Kazilas, M. Defect and Uncertainties of Adhesively Bonded Composite Joints. Sn. Appl. Sci. 2021, 3(9), 769. DOI: 10.1007/s42452-021-04753-8.
  • Lopez-Cruz, P.; Laliberté, J.; Lessard, L. Investigation of Bolted/Bonded Composite Joint Behaviour Using Design of Experiments. Compos. Struct. 2017, 170, 192–201. DOI: 10.1016/j.compstruct.2017.02.084.
  • Mandolfino, C.; Cassettari, L.; Pizzorni, M.; Saccaro, S.; Lertora, E. A Design-Of-Experiments Approach to Estimate the Effect of Plasma-Treatment Parameters on the Mechanical Resistance of Adhesive-Bonded Joints. J. Manuf. Process. 2021, 67, 177–194. DOI: 10.1016/j.jmapro.2021.04.054.
  • Lokhande, R.; Deshpande, A.; Mache, A. Taguchi Analysis of Bonded Single Lap Joint in Hemp Fiber Composite. Int. J. Eng. Technol. Sci. (IJETS). 2016, 5(1), 20. DOI: 10.15282/ijets.5.2016.1.4.1043.
  • Clarke, M. I.; Broughton, J. G.; Hutchinson, A. R.; Buckley, M. Application of the Design of Experiments Procedure to the Behavior of Adhesively Bonded Joints with Plasticity Deformable Adherends to Enable Further Understanding of Strain Rate Sensitivity. Int. J. Adhes. Adhes. 2013, 44, 226–231. DOI: 10.1016/j.ijadhadh.2013.03.003.
  • Lin, J.; Lu, Z.; Yang, H.; Wang, P. A Design of Experiments Assessment of Moisture Content in Uncured Adhesive on Static Strength of Adhesive-Bonded Galvanized SAE1006 Steel. Int. J. Adhes. Adhes. 2011, 31(6), 478–485. DOI: 10.1016/j.ijadhadh.2011.04.001.
  • Silva, L. F. M.; Carbas, R. J. C.; Critchlow, G. W.; Figueiredo, M. A. V.; Brown, K. Effect of Material, Geometry, Surface Treatment and Environment on the Shear Strength of Single Lap Joints. Int. J. Adhes. Adhes. 2009, 29(6), 621–632. DOI: 10.1016/j.ijadhadh.2009.02.012.
  • Spaggiari, A.; Favali, F. Evaluation of Polymeric 3D Printed Adhesively Bonded Joints: Effect of Joint Morphology and Mechanical Interlocking. Rapid Prototyp. J. 2022, 28(8), 1437–1451. DOI: 10.1108/RPJ-09-2021-0259.
  • Sherokar, D.; Bharule, A. Design Parameter Optimization to Enhance Strength of Adhesively Bonded Single Lap Joint Using Taguchi Methodology. Int. J. Sci. Res. Dev. 2018, 5, 12.
  • Liu, Y.; Gu, Z.; Hughes, D. J.; Ye, J.; Hou, X. Understanding Mixed Mode Ratio of Adhesively Bonded Joints Using Genetic Programming (GP). Compos. Struct. 2021, 258, 113389. DOI: 10.1016/j.compstruct.2020.113389.
  • Pratiwi, D. K.; Arifin, A.; An, G.; Mardhi, A.; Friansyah, A. Investigation of Welding Parameters of Dissimilar Weld of SS316 and ASTM A36 Joint Using a Grey-Based Taguchi Optimization Approach. Manuf. Mater. Proecess. 2023, 7(1), 39. DOI: 10.3390/jmmp7010039.
  • Saravanan, R.; Malladi, A.; Amuthan, T.; Aneesh, V. N.; Jerin, A.; Anbuchezhiyan, G.; Sikumar, A. Mechanical Characterization of Friction Stir Welded Dissimilar Aluminium Alloy Using Taguchi Approch. Mater. Today Proc. 2023. DOI: 10.1016/j.matpr.2023.03.278.
  • O’Mahoney, D. C.; Katnam, K. B.; O’Dowd, N. P.; McCarthy, C. T.; Young, T. M. Taguchi Analysis of Bonded Composite Single-Lap Joints Using a Combined Interface-Adhesive Damage Model. Int. J. Adhes. Adhes. 2013, 40, 168–178. DOI: 10.1016/j.ijadhadh.2012.06.001.
  • Rangaswamy, H.; Sogalad, I.; Basavarajappa, S.; Acharya, S.; Manjunath Patel, G. C. Experimental Analysis and Prediction of Strength of Adhesive-Bonded Single-Lap Composite Joints: Taguchi and Artificial Network Approaches. Sn. Appl. Sci. 2020, 2(6). DOI: 10.1007/s42452-020-2851-8.
  • Liu, Y.; Lemanski, S.; Zhang, X. Parametric Study of Size, Curvature and Free Edge Effects on the Predicted Strength of Bonded Composite Joints. Compos. Struct. 2018, 202, 364–373. DOI: 10.1016/j.compstruct.2018.02.017.
  • Silva, L. F. M.; Carbas, R. J. C.; Critchlow, G. W.; Figueiredo, M. A. V. Parametric Study of Adhesively Bonded Single Lap Joints by the Taguchi Method. J. Adhes. Sci. Technol. 2008, 22(13), 1477–1494. DOI: 10.1163/156856108X309585.
  • Sutherland, L. S.; Amado, C.; Soares, C. G. Statistical Experimental Design Techniques to Investigate the Strength of Adhesively Bonded T-Joints. Compos. Struct. 2017, 159, 444–454. DOI: 10.1016/j.compstruct.2016.09.076.
  • Teutenberg, D.; Hahn, O. Predicting Production Influences on Adhesively Bonded Joints Subject to Cyclic Load. Weld World. 2013, 57(2), 203–213. DOI: 10.1007/s40194-012-0015-1.
  • Khalkali, A.; Sarmadi, M.; Sarikhani, E. Investigation on the Best Process Criteria for Lap Joint Friction Stir Welding of AA1100 Aluminum Alloy via Taguchi Techniques and ANOVA. Proc IMechE Part E: J Process Mech. Eng. 2016, 231(2), 329–342. DOI: 10.1177/0954408916665651.
  • Achebo, J.; Salisu, S. Reduction of Undercuts in Fillet Welded Joints Using Taguchi Optimization Method. J. Miner Charact. Eng. 2015, 3(3), 171–179. DOI: 10.4236/jmmce.2015.33020.
  • Akbar, A. A.; Khaleel, S. K. Diffusion Bonding Using Taguchi Method. Int. J. Res. Sci. Manag. 2018, 5(7), 20–32.
  • Panneerselvam, K.; Aravindan, S.; Haq, A. N. Study on Resistance Welding of Glass Fiber Reinforced Thermoplastic Composite. Mater. Des. 2012, 41, 453–459. DOI: 10.1016/j.matdes.2012.05.025.
  • Zhang, Y.; Ji, R.; Cao, D.; Zhang, H.; Chen, H.; Hu, H. Effect of Flame Treatment on Bonding Performance of GF/EP Pultrusion Sheets Used VARI Process. Polymers, 2023, 15:1266.
  • Neto, J. A. B. P.; Campilho, R. D. S. G.; Silva, L. F. M. Parametric Study of Adhesive Joints with Composites. Int. J. Adhes. Adhes. 2012, 37, 96–101. DOI: 10.1016/j.ijadhadh.2012.01.019.
  • Akhavan-Safar, A.; Ayatollahi, M. R.; Silva, L. F. M. Strength Prediction of Adhesively Bonded Single Lap Joints with Different Bondline Thickness: A Critical Longitudinal Strain Approach. Int. J. Solid Struct. 2017, 109, 189–198. DOI: 10.1016/j.ijsolstr.2017.01.022.
  • Silva, L. F. M.; Rodrigues, T. N. S. S.; Figueiredo, M. A. V.; Moura, M. F. S. F.; Chousal, J. A. G. Effect of Adhesive Type and Thickness on the Lap Shear Strength. J. Adhes. 2006, 82(11), 1091–1115. DOI: 10.1080/00218460600948511.
  • Moreira, D. C.; Nunes, L. C. S. Experimental Analysis of Bonded Single Lap Joint with Flexible Adhesive. Appl. Adhes. Sci. 2014, 2(1), 1–8. DOI: 10.1186/2196-4351-2-1.
  • Akhavan-Safar, A.; Beygi, R.; Delzendehrooy, F.; Da Silva, L. F. M. Fracture Energy Assessment of Adhesives–Part I: Is GIC an Adhesive Property? A Neural Network Analysis. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235, 1461–1476. DOI: 10.1177/14644207211002763.
  • Delzendehrooy, F.; Beygi, R.; Akhavan-Safar, A.; Da Silva, L. F. M. Fracture Energy Assessment of Adhesives Part II: Is GIIc an Adhesive Material Property? (A Neural Network Analysis). J. Adv. Joining Proc. 2021, 3, 100049. DOI: 10.1016/j.jajp.2021.100049.
  • Borges, C. S. P.; Marques, E. A. S.; Carbas, R. J. C.; Ueffing, C.; Weißgraeber, P.; Silva, L. F. M. Review on the Effect of Moisture and Contamination on the Interfacial Properties of Adhesive Joints. Proc. IMechE. Part C. 2020, 253(3), 527–549. DOI: 10.1177/0954406220944208.
  • Fernandes, R. L.; Moura, M. F. S. F.; Moreira, R. D. F. Effect of Moisture on Pure Mode I and II Fracture Behaviour of Composite Bonded Joints. Int. J. Adhes. Adhes. 2016, 68, 30–38. DOI: 10.1016/j.ijadhadh.2016.01.010.
  • Abdel-Monsef, S.; Renart, J.; Carreras, L.; Maimí, P.; Turon, A. Environmental Effects on the Cohesive Laws of the Composite Bonded Joints. Compos. Part A. 2022, 155, 106798. DOI: 10.1016/j.compositesa.2021.106798.
  • Qian, Y.; Wu, N.; Hou, J.; Hao, X.; Cai, D. Thermal Stress Analysis of the Adhesive Layer in Composite Laminates. Coatings. 2022, 12(4), 472. DOI: 10.3390/coatings12040472.
  • Banea, M. D.; Silva, L. F. M.; Campilho, R. D. S. G. Mode II Fracture Toughness of Adhesively Bonded Joints as a Function of Temperature: Experimental and Numerical Study. J. Adhes. 2012, 88(4–6), 534–551. DOI: 10.1080/00218464.2012.660835.
  • Fernandes, R. L.; Moura, M. F. S. F.; Moreira, R. D. F. Effect of Temperature on Pure Modes I and II Fracture Behavior of Composite Bonded Joints. Compos. Part B. 2016, 96, 35–44. DOI: 10.1016/j.compositesb.2016.04.022.
  • Tauheed, M.; Datla, N. V. Characterization and Prediction of Hygrothermally Aged CFRP Adhesive Joint Subject to Mode II Load. Compos. Part C: Open Access. 2023, 11, 100357. DOI: 10.1016/j.jcomc.2023.100357.
  • Agha, A.; Abu-Farha, F. Experimental Methods to Capture Curing Induced Effects in Adhesive Bonded Joints. Int. J. Adhes. Adhes. 2021, 104, 102735. DOI: 10.1016/j.ijadhadh.2020.102735.
  • Han, L. X.; Chao, Y.; Zhang, W.; Chao, Y.; Wu, C. Study on the Effect of Post Curing on the Mode II Fracture Energy of Structural Adhesive Using a Parameter Identification Approach. Int. J. Adhes. Adhes. 2019, 95, 102398. DOI: 10.1016/j.ijadhadh.2019.102398.
  • Sorrentino, L. L.; Parodo, G.; Turchetta, S. Influence of Laser Treatment on End Notched Flexure Bonded Joints in Carbon Fiber Reinforced Polymer: Experimental and Numerical Results. Materials. 2022, 15(3), 910. DOI: 10.3390/ma15030910.
  • Figueiredo, J. C. P.; Campilho, R. D. S. G.; Marques, E. A. S.; Machado, J. J. M.; da Silva, L. F. M. Adhesive Thickness Influence on the Shear Fracture Toughness Measurements of Adhesive Joints. Int. J. Adhes. Adhes. 2018, 83, 15–23. DOI: 10.1016/j.ijadhadh.2018.02.015.
  • Liu, X.; Qian, S.; Ye, Y.; Xu, Q.; Li, X. Effect of Process Parameters on Mode-II Interlaminar Fracture Toughness and Fractography Features of Automated Fibre Placement Prepreg Laminates. J. Compos. Mater. 2021, 55(30), 4489–4501. DOI: 10.1177/00219983211041761.
  • Sarrado, C.; Leone, F. A.; Turona, A.; Dávila, C. G. A Numerical Study on Adhesive Thickness Effect on Bonded Composite Joints Using a Modified Finite Thickness Cohesive Element. 16th Eur. Conf. Compos. Mater. 2014, 6(24), 06.
  • Davidson, B. D.; Sun, X. Effects of Friction, Geometry, and Fixtures Compliance on the Perceived Toughness Form Three-And Four-Point Bend End-Notched Flexure Tests. J. Reinf. Plast. Compos. 2005, 24(15), 1611–1628. DOI: 10.1177/0731684405050402.
  • Plackett, R. L.; Burman, J. P. The Design of Optimum Multifactorial Experiments. Biometrika. 1946, 33(4), 305–325. DOI: 10.1093/biomet/33.4.305.
  • Moura, M. F. S. F.; Campilho, R. D. S. G.; Gonçalves, J. P. M. Pure Mode II Fracture Characterization of Composite Bonded Joints. Int. J. Solids Struct. 2009, 46(6), 1589–1595. DOI: 10.1016/j.ijsolstr.2008.12.001.
  • Dos Santos Souza, L. F.; Vandepitte, D.; Tita, V.; de Medeiros, R. Dynamic Response of Laminated Composites Using Design of Experiments: An Experimental and Numerical Study. Mech. Syst. Signal Process. 2019, 115, 82–101. DOI: 10.1016/j.ymssp.2018.05.022.
  • Leone, F. A.; Girolamo, D.; Dávila, C. G. Progressive Damage Analysis of Bonded Composite Joints. NASA/TM-2012-217790, 2012.
  • Dassault Systèmes. Abaqus 6.20 Documentation; Analysis User’s Manual: Vélizy-Villacoublay, France, 2020.
  • Campilho, R. D. S. G.; Banea, M. D.; Neto, J. A. B. P.; Silva, L. F. M. Modelling Adhesive Joints with Cohesive Zone Models: Effect of the Cohesive Law Shape of the Adhesive Layer. Int. J. Adhes. Adhes. 2013, 44, 48–56. DOI: 10.1016/j.ijadhadh.2013.02.006.
  • Machado, J. J. M.; Gamarra, P. M.-R.; Marques, E. A. S.; Silva, L. F. M. Numerical Study of the Behaviour of Composite Mixed Adhesive Joints Under Impact Strength for the Automotive Industry. Compos. Struct. 2018, 185, 373–380. DOI: 10.1016/j.compstruct.2017.11.045.
  • Camanho, P. P.; D’ávila, C. G. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials. NASA/TM-2002–211737, 2002, p. 1–37.
  • Cavazzuti, M. Optimization Methods: From Theory to Design – Scientific and Technological Aspect in Mechanics; Springer Verlag: p. 262, 2013. 10.1007/978-3-642-31187-1
  • Davila, Y.; Crouzeix, L.; Douchin, B.; Collombet, F.; Grunevald, Y. H. Identification and Modelling of the In-Plane Reinforced Orientation Variations in a CFRP Laminate Produced by Manual Lay-Up. Appl. Compos. Mater. 2017, 25(3), 647–660. DOI: 10.1007/s10443-017-9642-4.
  • Herakovich, C. T. Mechanics of Fibrous Composites, 1st ed; John Wiley & Sons, Inc: Southern Gate, Chichester, West Sussex, UK, 1997; pp. 480.
  • Melchers, R. E.; Beck, A. T. Structural Reliability Analysis and Prediction, 3rd; John Wiley & Sons: Southern Gate, Chichester, West Sussex, UK, 2018; p. 506.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.