144
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Numerical analysis of the effect of ice-metal interface stress singularity on bonding failure

, , , , , & show all
Pages 813-827 | Received 27 Jul 2023, Accepted 21 Sep 2023, Published online: 02 Oct 2023

References

  • Tanaka, H.; Ahmad, T.; Utsumi, Y.; Yonemoto, S.; Ichikawa, G. Icing on Full-Scale Swept Wings in Flight and Icing Wind Tunnel. J. Aircraft. 2022, 59(6), 1437–1449. DOI: 10.2514/1.C036640.
  • Pratama, D.; Nirbito, W.; Adhitya, M. Landing Performance Prediction of Commuter Aircraft Due to Wings Ice Accretion on High Terrain Operation. IOP Conference Series. Mat. Sci. Eng. R. 2018, 449(1), 12015. DOI: 10.1088/1757-899X/449/1/012015.
  • Peter, Z.; Farzaneh, M.; Kiss, L. Assessment of the Current Intensity for Preventing Ice Accretion on Overhead Conductors. IEEE. T. Power. Deliver. 2007, 22(1), 565–574. DOI: 10.1109/TPWRD.2006.877091.
  • Afzal, F.; Virk, M.; Bevrani, H. Review of Icing Effects on Wind Turbine in Cold Regions. E3S Web Conferences. 2018, 72, 1007. DOI: 10.1051/e3sconf/20187201007.
  • Varanasi, K.; Hsu, M.; Bhate, N.; Yang, W.; Deng, T. Spatial Control in the Heterogeneous Nucleation of Water. Appl. Phys. Lett. 2019, 95(9), 094101-094101–3. DOI: 10.1063/1.3200951.
  • Eberle, P.; Tiwari, M.; Maitra, T.; Poulikakos, D. Rational Nanostructuring of Surfaces for Extraordinary Icephobicity. Nanoscale. 2014, 6(9), 4874–4881. DOI: 10.1039/c3nr06644d.
  • Zhuo, Y.; Xiao, S.; Håkonsen, V.; He, J.; Zhang, Z. Anti-Icing Ionogel Surfaces: Inhibiting Ice Nucleation, Growth, and Adhesion. ACS. Mater. Lett. 2022, 2(6), 616–623. DOI: 10.1021/acsmaterialslett.0c00094.
  • Bi, Y.; Cao, B.; Li, T. Enhanced Heterogeneous Ice Nucleation by Special Surface Geometry. Nat. Commun. 2017, 8(1), 15372. DOI: 10.1038/ncomms15372.
  • Jin, J.; Li, Y.; Chen, T.; Cong, Q.; Qi, Y. Effect of Elastic Modulus of Coating on Ice-Adhesion Strength on Substrate. Jilin Da Xue Xue Bao. J. Jilin Univer. Engg. Technol. Edit. Gong Xue Ban. 2017, 5, 1548. DOI: 10.13229/j.cnki.jdxbgxb201705029.
  • He, Z.; Xiao, S.; Gao, H.; He, J.; Zhang, Z. Multiscale Crack Initiator Promoted Super-Low Ice Adhesion Surfaces. Soft. Matter. 2017, 13(37), 6562–6568. DOI: 10.1039/c7sm01511a.
  • Makkonen, L. Ice Adhesion -Theory, Measurements and Countermeasures. J. Adhes. Sci. Technol. 2012, 26(4–5), 413–445. DOI: 10.1163/016942411X574583.
  • Memon, H.; Liu, J.; De Focatiis, D.; Choi, K.; Hou, X. Intrinsic Dependence of Ice Adhesion Strength on Surface Roughness. Surf. Coat. Technol. 2020, 385, 125382. DOI: 10.1016/j.surfcoat.2020.125382.
  • Zou, M.; Beckford, S.; Wei, R.; Ellis, C.; Hatton, G.; Miller, M. Effects of Surface Roughness and Energy on Ice Adhesion Strength. Appl. Surf. Sci. 2011, 257(8), 3786–3792. DOI: 10.1016/j.apsusc.2010.11.149.
  • Hassan, M.; Lee, H.; Lim, S. The Variation of Ice Adhesion Strength with Substrate Surface Roughness. Meas. Sci, Technol. 2010, 21(7), 075701. DOI: 10.1088/0957-0233/21/7/075701.
  • Maghsoudi, K.; Vazirinasab, E.; Momen, G.; Jafari, R. Icephobicity and Durability Assessment of Superhydrophobic Surfaces: The Role of Surface Roughness and the Ice Adhesion Measurement Technique. J. Mater. Process. Tech. 2021, 288, 116883. DOI: 10.1016/j.jmatprotec.2020.116883.
  • Dundurs, J. Discussion Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading. Int. J. Appl. Mech. 1969, 36(3), 650–652. DOI: 10.1115/1.3564739.
  • Dundurs, J.; Lee, M. Stress Concentration at a Sharp Edge in Contact Problems. J. Elasticity. 1972, 2(2), 109–112. DOI: 10.1007/BF00046059.
  • Chen, D.; Nisitani, H. Singular Stress Field Near the Corner of Jointed Dissimilar Materials. J. Appl. Mech. 1993, 60(3), 607–613. DOI: 10.1115/1.2900847.
  • Cong, Q.; Xu, J.; Ren, L.; Jin, J.; Chen, T.; Choy, K. Changes of Water/Ice Morphological, Thermodynamic, and Mechanical Parameters During the Freezing Process. Arab. J. Sci. Eng. 2021, 46(11), 10631–10639. DOI: 10.1007/s13369-021-05502-0.
  • Mizugaki, Y.; Kikkawa, K.; Terai, H.; Hao, M.; Sata, T. Theoretical Estimation of Machined Surface Profile Based on Cutting Edge Movement and Tool Orientation in Ball-Nosed End Milling. CIRP Ann. 2003, 52(1), 49–52. DOI: 10.1016/S0007-8506(07)60528-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.