520
Views
4
CrossRef citations to date
0
Altmetric
Genetics and breeding

Designing and implementing a genetic improvement program in commercial beekeeping operations

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 638-647 | Received 10 Oct 2018, Accepted 24 Aug 2019, Published online: 30 Jan 2020

References

  • Akdemir, D., Sanchez, J. I., & Jannink, J.-L. (2015). Optimization of genomic selection training populations with a genetic algorithm. Genetics Selection Evolution, 47(1), 38. doi:10.1186/s12711-015-0116-6
  • Arechavaleta-Velasco, M. E., Alcala-Escamilla, K., Robles-Rios, C., Tsuruda, J. M., & Hunt, G. J. (2012). Fine-Scale Linkage Mapping Reveals a Small Set of Candidate Genes Influencing Honey Bee Grooming Behavior in Response to Varroa Mites. PLoS One, 7(11), e47269. doi:10.1371/journal.pone.0047269
  • Behrens, D., & Moritz, R. F. A. (2014). QTL-mapping of individual resistance against American foulbrood in haploid honeybee drone larvae (Apis mellifera). Apidologie, 45(4), 409–417. doi:10.1007/s13592-013-0255-0
  • Beye, M., Hasselmann, M., Fondrk, M. K., Page, R. E., Jr., & Omholt, S. W. (2003). The gene CSD is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell, 114(4), 419–429. doi:10.1016/S0092-8674(03)00606-8
  • Bienefeld, K., Ehrhardt, K., & Reinhardt, F. (2007). Genetic evaluation in the honey bee considering queen and worker effects – A BLUP-Animal Model approach. Apidologie, 38(1), 77–85. doi:10.1051/apido:2006050
  • Bienefeld, K., Ehrhardt, K., & Reinhardt, F. (2008). Noticeable success in Honey Bee selection after the introduction of genetic evaluation using BLUP. (August), 739–742.
  • Bienefeld, K., Reinhardt, F., & Pirchner, F. (1989). Inbreeding effects of queen and workers on colony traits in the honey bee. Apidologie, 20(5), 439–450. doi:10.1051/apido:19890509
  • Brascamp, E. W., & Bijma, P. (2014). Methods to estimate breeding values in honey-bees. Genetics Selection Evolution, 46(1), 1–15. doi:10.1186/s12711-014-0053-9
  • Brascamp, E. W., Wanders, T. H. V., Wientjes, Y. C. J., & Bijma, P. (2018). Prospects for genomic selection in honey-bee breeding. Proceedings of the World Congress on Genetics Applied to Livestock Production, 11, 29.
  • Brother Adam (1987). Breeding the honeybee. Mytholmroyd, UK: Northern Bee Books.
  • Büchler, R., Costa, C., Hatjina, F., Andonov, S., Meixner, M. D., Conte, Y. L., … Wilde, J. (2014). The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. Journal of Apicultural Research, 53(2), 205–214. doi:10.3896/IBRA.1.53.2.03
  • Byrne, T. J., Amer, P. R., Fennessy, P. F., Hansen, P., & Wickham, B. W. (2012). A preference-based approach to deriving breeding objectives: Applied to sheep breeding. Animal, 6(05), 778–788. doi:10.1017/S1751731111002060
  • Cauia, E., Siceanu, A., Patruica, S., Bura, M., Sapcaliu, A., & Magdici, M. (2011, March 1). A standardized data base for honeybee colonies evaluation, with application in honeybee breeding programs.
  • Chaline, N., Ratnieks, F. L. W., Raine, N. E., & Badcock, N. S. (2004). Non-lethal sampling of honey bee, Apis mellifera, DNA using wing tips. Apidologie, 35, 311–318. doi:10.1051/apido:2004015
  • Cole, J. B. (2015). A simple strategy for managing many recessive disorders in a dairy cattle breeding program. Genetics Selection Evolution, 47(1), 1–13. doi:10.1186/s12711-015-0174-9
  • Costa, C., Lodesani, M., & Bienefeld, K. (2012). Differences in colony phenotypes across different origins and locations: Evidence for genotype by environment interactions in the Italian honeybee (Apis mellifera ligustica)? Apidologie, 43(6), 634–642. doi:10.1007/s13592-012-0138-9
  • Costa Maia, F., Lourenco, D. A. L., Tsuruta, S., & Martins, E. (2018). Selection criteria for improving honey production in Africanized honey bees. Journal of Animal Science, 96(December), 115. doi:10.2527/jam2016-1208
  • Danka, R. G., De Guzman, L. I., Rinderer, T. E., Sylvester, H. A., Wagener, C. M., Bourgeois, A. L., … Villa, J. D. (2012). Functionality of varroa-resistant honey bees (Hymenoptera: Apidae) when used in migratory beekeeping for crop pollination. Journal of Economic Entomology, 105(2), 313–321. doi:10.1603/EC11286
  • de Roos, A. P. W., Hayes, B. J., & Goddard, M. E. (2009). Reliability of genomic predictions across multiple populations. Genetics, 183(4), 1545–1553. doi:10.1534/genetics.109.104935
  • Dickerson, G. (1970). Efficiency of animal production - Molding the biological components. Journal of Animal Science, 30(6), 849–859. doi:10.2527/jas1970.306849x
  • Evans, H. (2015). Arnia: Using remote hive monitoring data. Bee Culture, 143(1), 57–58.
  • Georges, M., Charlier, C., & Hayes, B. J. (2019). Harnessing genomic information for livestock improvement. Nature Reviews Genetics, 20(3), 135–156. doi:10.1038/s41576-018-0082-2
  • Gregory, P. G., & Rinderer, T. E. (2004). Non-destructive sources of DNA used to genotype honey bee (Apis mellifera) queens. Entomologia Experimentalis et Applicata, 111(3), 173–177. doi:10.1111/j.0013-8703.2004.00164.x
  • Guarna, M. M., Hoover, S. E., Huxter, E., Higo, H., Moon, K. M., Domanski, D., … Foster L. J. (2017). Peptide biomarkers used for the selective breeding of a complex polygenic trait in honey bees. Scientific Reports, 7(1), 1–10. doi:10.1038/s41598-017-08464-2
  • Gupta, P., Reinsch, N., Spötter, A., Conrad, T., & Bienefeld, K. (2013). Accuracy of the unified approach in maternally influenced traits–illustrated by a simulation study in the honey bee (Apis mellifera). BMC Genetics, 14(1), 36. doi:10.1186/1471-2156-14-36
  • Hazel, L. N. (1943). The genetic basis for constructing selection indexes. Genetics, 28(6), 476–490.
  • Hazel, L. N., & Lush, J. L. (1942). The efficiency of three methods of selection. Journal of Heredity, 33(11), 393–399. doi:10.1093/oxfordjournals.jhered.a105102
  • Hely, F. S., Amer, P. R., Walker, S. P., & Symonds, J. E. (2013). Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: A simulation study. animal, 7(1), 1–10. doi:10.1017/S1751731112001371
  • Henryon, M., Berg, P., & Sørensen, A. C. (2014). Invited review: Animal-breeding schemes using genomic information need breeding plans designed to maximise long-term genetic gains. Livestock Science, 166(1), 38–47. doi:10.1016/j.livsci.2014.06.016
  • Hyink, O., Laas, F., & Dearden, P. K. (2013). Genetic tests for alleles of complementary-sex-determiner to support honeybee breeding programmes. Apidologie, 44(3), 306–313. doi:10.1007/s13592-012-0181-6
  • Jones Ritten, C., Peck, D., Ehmke, M., & Patalee, M. A. B. (2018). Firm efficiency and returns-to-scale in the honey bee pollination services industry. Journal of Economic Entomology, 111(3), 1014–1022. doi:10.1093/jee/toy075
  • Klein, A. -M., Vaissiére, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological sciences, 274(1608), 303–313. doi:10.1098/rspb.2006.3721
  • Kremen, C., Williams, N. M., & Thorp, R. W. (2002). Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Sciences, 99(26), 16812–16816. doi:10.1073/pnas.262413599
  • Liu, H., Zhang, X., Huang, J., Chen, J.-Q., Tian, D., Hurst, L. D., & Yang, S. (2015). Causes and consequences of crossing-over evidenced via a high-resolution recombinational landscape of the honey bee. Genome Biology, 16(1), 1–19. doi:10.1186/s13059-014-0566-0
  • Lobo, N. F., Ton, L. Q., Hill, C. A., Emore, C., Romero-Severson, J., Hunt, G. J., & Collins, F. H. (2003). Genomic analysis in the sting-2 quantitative trait locus for defensive behavior in the honey bee, Apis mellifera. Genome Research, 13(12), 2588–2593. doi:10.1101/gr.1634503
  • Lodesani, M., & Costa, C. (2003). Bee breeding and genetics in Europe. Bee World, 84(2), 69–85. (June). doi:10.1080/0005772X.2003.11099579
  • Manning, R. (1996). Evaluation of the Western Australian queen bee breeding program. Australian Journal of Experimental Agriculture, 36(4), 513–518. doi:10.1071/EA9960513
  • Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819–1829. https://doi.org/11290733.
  • Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2016). Genomic selection: A paradigm shift in animal breeding. Animal Frontiers, 6(1), 6–14. doi:10.2527/af.2016-0002
  • Misztal, I. (2011). FAQ for genomic selection. Journal of Animal Breeding and Genetics, 128(4), 245–246. doi:10.1111/j.1439-0388.2011.00944.x
  • Misztal, I., Legarra, A., & Aguilar, I. (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. Journal of Dairy Science, 92(9), 4648–4655. doi:10.3168/jds.2009-2064
  • New Zealand Ministry for Primary Industries. (2018). Farm Monitoring Report NZ - Apiculture Report 2017. Retrieved from https://mpi.govt.nz/document-vault/5302.
  • Nielsen, H. M., Amer, P. R., & Byrne, T. J. (2014). Approaches to formulating practical breeding objectives for animal production systems. Acta Agriculturae Scandinavica A: Animal Sciences, 64(1), 2–12. doi:10.1080/09064702.2013.827237
  • Page, R. E., Jr., & Metcalf, R. A. (1982). Multiple Mating, Sperm Utilization and Social Evolution. The American Naturalist, 119(2), 263–281. doi:10.1086/283907
  • Parker, R., Melathopoulos, A. P., White, R., Pernal, S. F., Guarna, M. M., & Foster, L. J. (2010). Ecological adaptation of diverse honey bee (Apis mellifera) populations. PLoS One, 5(6), e11096. doi:10.1371/journal.pone.0011096
  • Paterson, A. H., Lander, E. S., Hewitt, J. D., Peterson, S., Lincoln, S. E., & Tanksley, S. D. (1988). Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335(6192), 721–726. doi:10.1038/335721a0
  • Petersen, G. E. L., Fennessy, P. F., van Stijn, T. C., Clarke, S. M., & Dearden, P. K. (2017). Genotyping-by-sequencing for genetic improvement in honeybees. Proceedings of the 21st Conference of the Association for the Advancement of Animal Breeding and Genetics. Townsville, Australia: The Association for the Advancement of Animal Breeding and Genetics.
  • Pryce, J. E., Hayes, B. J., & Goddard, M. E. (2012). Novel strategies to minimize progeny inbreeding while maximizing genetic gain using genomic information. Journal of Dairy Science, 95(1), 377–388. doi:10.3168/jds.2011-4254
  • Rinderer, T. E., Harris, J. W., Hunt, G. J., & De Guzman, L. I. (2010). Breeding for resistance to Varroa destructor in North America. Apidologie, 41(3), 409–424. doi:10.1051/apido/2010015
  • Seeley, T. D., & Tarpy, D. R. (2007). Queen promiscuity lowers disease within honeybee colonies. Proceedings of the Royal Society B: Biological Sciences, 274(1606), 67–72. doi:10.1098/rspb.2006.3702
  • Trivers, R. L., & Hare, H. (1976). Haploidploidy and the evolution of the social insect. Science (New York, N.Y.), 191(4224), 249–263. doi:10.1126/science.1108197
  • Van Engelsdorp, D., & Otis, G. W. (2000). Application of a modified selection index for honey bees (Hymenoptera: Apidae). Journal of Economic Entomology, 93(6), 1606–1612. doi:10.1603/0022-0493-93.6.1606
  • Vaziritabar, S., Aghamirkarimi, A., & Esmaeilzade, S. M. (2016). Evaluation of the defensive behaviour in two honeybee races Iranian honey bee (Apis mellifera meda) and Carniolan honey bee (Apis mellifera carnica) and grooming behaviour of different bee races in controlling Varroa destructor mite in honey bee colonies in Iran. Journal of Entomology and Zoology Studies, 4(5), 586–602.
  • Ward, K., Danka, R. G., & Ward, R. (2008). Comparative performance of two mite-resistant stocks of honey bees (Hymenoptera: Apidae) in Alabama beekeeping operations. Journal of Economic Entomology, 101(3), 654–659. doi:10.1093/jee/101.3.654
  • Woyke, J. (1981). Effect of sex allele homo-heterozygosity on honeybee colony populations and on their honey production II. Unfavourable development conditions and restricted queens. Journal of Apicultural Research, 20(3), 148–155. doi:10.1080/00218839.1981.11100489
  • Zakar, E., Jávor, A., & Kusza, S. (2014). Genetic bases of tolerance to Varroa destructor in honey bees (Apis mellifera L.). Insectes Sociaux, 61(3), 207–215. doi:10.1007/s00040-014-0347-5
  • Zayed, A. (2009). Bee genetics and conservation. Apidologie, 40(3), 237–262. doi:10.1051/apido/2009026
  • Zayed, A. (2016). Evolution: Insect invasions and natural selection. Nature, 539(7630), 500–502. doi:10.1038/nature20472

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.