255
Views
4
CrossRef citations to date
0
Altmetric
Physiology, biochemistry, and chemical ecology

Purification and characteristics of individual major royal jelly protein 1–3

, , ORCID Icon, & ORCID Icon
Pages 1049-1060 | Received 06 Dec 2016, Accepted 31 Oct 2019, Published online: 02 Jun 2020

References

  • Albert, S., & Klaudiny, J. (2007). MRJP9, an ancient protein of the honeybee MRJP family with non nutritional function. Journal of Apicultural Research, 46(2), 99–104. https://doi.org/10.3896/IBRA.1.46.2.06
  • Albert, S., Klaudiny, J., & Simuth, J. (1999). Molecular characterization of MRJP3, highly polymorphic protein of honeybee (Apis mellifera) royal jelly. Insect Biochemistry and Molecular Biology, 29(5), 427–434. https://doi.org/10.1016/S0965-1748(99)00019-3
  • Buttstedt, A., Ihling, C. H., Pietzsch, M., & Moritz, R. F. (2016). Royalactin is not a royal making of a queen. Nature, 537(7621), E10–E12. https://doi.org/10.1038/nature19349
  • Cruz, G. C. N., Garcia, L., Silva, A. J., Barbosa, J. A. R. G., Ricart, C. A. O., Freitas, S. M., & Sousa, M. V. (2011). Calcium effect and pH-dependence on self-association and structural stability of the Apis mellifera major royal jelly protein 1. Apidologie, 42(3), 252–269. https://doi.org/10.1007/s13592-011-0025-9
  • Detienne, G., De Haes, W., Ernst, U. R., Schoofs, L., & Temmerman, L. (2014). Royalactin extends lifespan of Caenorhabditis elegans through epidermal growth factor signaling. Experimental Gerontology, 60, 129–135. https://doi.org/10.1016/j.exger.2014.09.021
  • Hayes, D., Laue, T., & Philo, J. (1995). Program Sednterp: Sedimentation interpretation program. University of New Hampshire.
  • Kamakura, M. (2011). Royalactin induces queen differentiation in honeybees. Nature, 473(7348), 478–483. https://doi.org/10.1038/nature10093
  • Kamakura, M., Fukuda, T., Fukushima, M., & Yonekura, M. (2001). Storage-dependent degradation of 57-kDa protein in royal jelly: a possible marker for freshness. Biosci Biotechnol Biochem, 65(2), 277–284. https://doi.org/10.1271/bbb.65.277
  • Kamakura, M., Mitani, N., Fukuda, T., & Fukushima, M. (2001). Antifatigue effect of fresh royal jelly in mice. Journal of Nutritional Science and Vitaminology, 47(6), 394–401. https://doi.org/10.3177/jnsv.47.394
  • Kamakura, M., Suenobu, N., & Fukushima, M. (2001). Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum. Biochemical and Biophysical Research Communications, 282(4), 865–874. https://doi.org/10.1006/bbrc.2001.4656
  • Kashima, Y., Kanematsu, S., Asai, S., Kusada, M., Watanabe, S., Kawashima, T., Nakamura, T., Shimada, M., Goto, T., & Nagaoka, S. (2014). Identification of a novel hypocholesterolemic protein, major royal jelly protein 1, derived from royal jelly. PLoS One, 9(8), e105073. https://doi.org/10.1371/journal.pone.0105073
  • Kimura, Y., Washino, N., & Yonekura, M. (1995). N-linked sugar chains of 350-kDa royal jelly glycoprotein. Bioscience, Biotechnology, and Biochemistry, 59(3), 507–509. https://doi.org/10.1271/bbb.59.507
  • Kohno, K., Okamoto, I., Sano, O., Arai, N., Iwaki, K., Ikeda, M., & Kurimoto, M. (2004). Royal jelly inhibits the production of proinflammatory cytokines by activated macrophages. Bioscience, Biotechnology, and Biochemistry, 68(1), 138–145. https://doi.org/10.1271/bbb.68.138
  • Lees, J., Smith, B., Wien, F., Miles, A., & Wallace, B. (2004). CDtool: An integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Analytical Biochemistry, 332(2), 285–289. https://doi.org/10.1016/j.ab.2004.06.002
  • Majtan, J., Kovacova, E., Bilikova, K., & Simuth, J. (2006). The immunostimulatory effect of the recombinant apalbumin 1-major honeybee royal jelly protein-on TNFalpha release. International Immunopharmacology, 6, 269–278. https://doi.org/10.1016/j.intimp.2005.08.014
  • Mandacaru, S. C., do Vale, L. H., Vahidi, S., Xiao, Y., Skinner, O. S., Ricart, C. A., Kelleher, N. L., de Sousa, M. V., & Konermann, L. (2017). Characterizing the structure and oligomerization of major royal jelly protein 1 (MRJP1) by mass spectrometry and complementary biophysical tools. Biochemistry, 56(11), 1645–1655. https://doi.org/10.1021/acs.biochem.7b00020
  • Matsuoka, T., Kawashima, T., Nakamura, T., Kanamaru, Y., & Yabe, T. (2012). Isolation and characterization of proteases that hydrolyze royal jelly proteins from queen bee larvae of the honeybee, Apis mellifera. Apidologie, 43(6), 685–697. https://doi.org/10.1007/s13592-012-0143-z
  • Moriyama, T., Ito, A., Omote, S., Miura, Y., & Tsumoto, H. (2015). Heat resistant characteristics of major royal jelly protein 1 (MRJP1) oligomer. PLoS One, 10(5), e0119169. https://doi.org/10.1371/journal.pone.0119169
  • Ohashi, K., Natori, S., & Kubo, T. (1997). Change in the mode of gene expression of the hypopharyngeal gland cells with an age-dependent role change of the worker honeybee Apis mellifera L. European Journal of Biochemistry, 249(3), 797–802. https://doi.org/10.1111/j.1432-1033.1997.t01-1-00797.x
  • Okamoto, I., Taniguchi, Y., Kunikata, T., Kohno, K., Iwaki, K., Ikeda, M., & Kurimoto, M. (2003). Major royal jelly protein 3 modulates immune responses in vitro and in vivo. Life Sciences, 73(16), 2029–2045. https://doi.org/10.1016/S0024-3205(03)00562-9
  • Pavel, C. I., Mărghitaş, L. A., Bobiş, O., Dezmirean, D. S., Şapcaliu, A., Radoi, I. & Mădaş, M. N. (2011). Biological activities of royal jelly-review. Scientific Papers Animal Science and Biotechnologies, 44(2), 108–118. https://doaj.org/article/0b5a5ae04f934fcca33a911979d4b10d
  • Ramadan, M. F., & Al-Ghamdi, A. (2012). Bioactive compounds and health-promoting properties of royal jelly: A review. Journal of Functional Foods, 4(1), 39–52. https://doi.org/10.1016/j.jff.2011.12.007
  • Sabatini, A., Marcazzan, G., Caboni, M., Bogdanov, S., & Almeida-Muradian, L. (2009). Quality and standardisation of royal jelly. Journal of ApiProduct and ApiMedical Science, 1(1), 16–16. https://doi.org/10.3896/IBRA.4.01.1.04
  • Santos, K. S., dos Santos, L. D., Mendes, M. A., de Souza, B. M., Malaspina, O., & Palma, M. S. (2005). Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees. Insect Biochemistry and Molecular Biology, 35(1), 85–91. https://doi.org/10.1016/j.ibmb.2004.10.003
  • Schmitzová, J., Klaudiny, J., Albert, Š., Schröder, W., Schreckengost, W., Hanes, J., Júdová, J., & Šimúth, J. (1998). A family of major royal jelly proteins of the honeybee Apis mellifera L. Cellular and Molecular Life Sciences (CMLS), 54(9), 1020–1030. https://doi.org/10.1007/s000180050229
  • Schuck, P. (2003). On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Analytical Biochemistry, 320(1), 104–124. https://doi.org/10.1016/S0003-2697(03)00289-6
  • Šimúth, J. (2001). Some properties of the main protein of honeybee (Apis mellifera) royal jelly. Apidologie, 32, 69–80.
  • Šimúth, J., Bíliková, K., KováčOvá, E., Kuzmová, Z., & Schroder, W. (2004). Immunochemical approach to detection of adulteration in honey: physiologically active royal jelly protein stimulating TNF-α release is a regular component of honey. Journal of Agricultural and Food Chemistry, 52(8), 2154–2158. https://doi.org/10.1021/jf034777y
  • Tamura, S., Amano, S., Kono, T., Kondoh, J., Yamaguchi, K., Kobayashi, S., Ayabe, T., & Moriyama, T. (2009). Molecular characteristics and physiological functions of major royal jelly protein 1 oligomer. Proteomics, 9(24), 5534–5543. https://doi.org/10.1002/pmic.200900541
  • Tamura, S., Kono, T., Harada, C., Yamaguchi, K., & Moriyama, T. (2009). Estimation and characterisation of major royal jelly proteins obtained from the honeybee Apis merifera. Food Chemistry, 114(4), 1491–1497. https://doi.org/10.1016/j.foodchem.2008.11.058
  • Tian, W., Li, M., Guo, H., Peng, W., Xue, X., Hu, Y., Liu, Y., Zhao, Y., Fang, X., Wang, K., Li, X., Tong, Y., Conlon, M. A., Wu, W., Ren, F., & Chen, Z. (2018). Architecture of the native major royal jelly protein 1 oligomer. Nature Communications, 9(1), 3373. https://doi.org/10.1038/s41467-018-05619-1
  • Whitmore, L., & Wallace, B. (2008). Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers, 89(5), 392–400. https://doi.org/10.1002/bip.20853

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.