148
Views
3
CrossRef citations to date
0
Altmetric
Physiology, biochemistry, and chemical ecology

Effect of the own vs. foreign colony odor on daily shifts in olfactory and thermal preference and metabolic rate of the honey bee (Apis mellifera) workers

ORCID Icon, &
Pages 691-702 | Received 21 Oct 2018, Accepted 03 Dec 2019, Published online: 02 Jun 2020

References

  • Balderrama, N. M., Almeida, L. O., & Nunez, J. A. (1992). Metabolic rate during foraging in the honeybee. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 162(5), 440–447. https://doi.org/10.1007/BF00258967
  • Bloch, G. (2010). The social clock of the honeybee. Journal of Biological Rhythms, 25(5), 307–317. https://doi.org/10.1177/0748730410380149
  • Bortolotti, L., & Costa, C. (2014). Chemical communication in the honey bee society. in: Mucignat-Caretta C. (Ed.), Neurobiology of Chemical Communication. CRC Press. 147–210.
  • Breed, M. D. (1998). Recognition pheromones of the honey bee. BioScience, 48(6), 463–470. https://doi.org/10.2307/1313244
  • Breed, M. D., Diaz, P. H., & Lucero, K. D. (2004). Olfactory information processing in honeybee, Apis mellifera, nestmate recognition. Animal Behaviour, 68(4), 921–928. https://doi.org/10.1016/j.anbehav.2003.10.033
  • Breed, M. D., Guzman-Novoa, E., & Hunt, G. J. (2004). Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annual Review of Entomology, 49, 271–298. https://doi.org/10.1146/annurev.ento.49.061802.123155
  • Breed, M. D., Leger, E. A., Pearce, A. N., & Wang, Y. J. (1998). Comb wax effects on the ontogeny of honey bee nestmate recognition. Animal behaviour, 55(1), 13–20. https://doi.org/10.1006/anbe.1997.0581
  • Breed, M. D., Page, R. E., Jr., Hibbard, B. E., & Bjostad, L. B. (1995). Interfamily variation in comb wax hydrocarbons produced by honey bees. Journal of Chemical Ecology, 21(9), 1329–1338. https://doi.org/10.1007/BF02027565
  • Breed, M. D., Williams, K. R., & Fewell, J. H. (1988). Comb wax mediates the acquisition of nest-mate recognition cues in honey bees. Proceedings of the National Academy of Sciences of the United States of America, 85(22), 8766–8769. https://doi.org/10.1073/pnas.85.22.8766
  • Coelho, J. R. (1991). The effect of thorax temperature on force production during tethered flight in honeybee (Apis mellifera) drones, workers, and queens. Physiological Zoology, 64(3), 823–835. https://doi.org/10.1086/physzool.64.3.30158209
  • Crailsheim, K., Stabentheiner, A., Hrassnigg, N., & Leonhard, B. (1999). Oxygen consumption at different activity levels and ambient temperatures in isolated honeybees (Hymenoptera: Apidae). Entomologia Generalis, 24(1), 1–12. https://doi.org/10.1127/entom.gen/24/1999/1
  • Dani, F. R., Jones, G. R., Corsi, S., Beard, R., Pradella, D., & Turillazzi, S. (2005). Nestmate Recognition cues in the honey bee: Differential importance of cuticular alkanes and alkenes. Chemical Senses, 30(6), 477–489. https://doi.org/10.1093/chemse/bji040
  • D'ettorre, P., Wenseleers, T., Dawson, J., Hutchinson, S., Boswell, T., & Ratnieks, F. L. W. (2006). Wax combs mediate nestmate recognition by guard honeybees. Animal Behaviour, 71(4), 773–779. https://doi.org/10.1016/j.anbehav.2005.05.014
  • Downs, S. G., & Ratnieks, F. L. (1999). Recognition of conspecifics by honeybee guards uses nonheritable cues acquired in the adult stage. Animal Behaviour, 58(3), 643–648. https://doi.org/10.1006/anbe.1999.1177
  • Esch, H. (1976). Body temperature and flight performance of honey bees in a servomechanically controlled wind tunnel. Journal of Comparative Physiology, 109, 254–277.
  • Esch, H. (1988). The effects of temperature on flight muscle potentials in honeybees and cuculiinid winter moths. Journal of Experimental Biology, 135, 109–117.
  • Fahrenholz, L., Lamprecht, I., & Schricker, B. (1992). Calorimetric investigations of the different castes of honey bees, Apis mellifera carnica. Journal of Comparative Physiology B, 162(2), 119–130. https://doi.org/10.1007/BF00398337
  • Fan, Y., Richard, F.-J., Rouf, N., & Grozinger, C. M. (2010). Effect of queen mandibular pheromone on nestmate recognition in worker honeybees, Apis mellifera. Animal Behaviour, 79(3), 649–656. https://doi.org/10.1016/j.anbehav.2009.12.013
  • Frisch, B., & Koeniger, N. (1994). Social synchronization of the activity rhythms of honeybees within a colony. Behavioral Ecology and Sociobiology, 35(2), 91–98. https://doi.org/10.1007/BF00171498
  • Fröhlich, B., Tautz, J., & Riederer, M. (2000). Chemometric classification of comb and cuticular waxes of the honeybee Apis mellifera carnica. Journal of Chemical Ecology, 26(1), 123–137. https://doi.org/10.1023/A:1005493512305
  • Grodzicki, P., & Caputa, M. (2005). Social versus individual behaviour: a comparative approach to thermal behaviour of the honeybee (Apis mellifera L.) and the American cockroach (Periplaneta americana L.). Journal of Insect Physiology, 51(3), 315–322. https://doi.org/10.1016/j.jinsphys.2005.01.001
  • Grodzicki, P., & Caputa, M. (2012). Photoperiod influences endogenous rhythm of ambient temperature selection by the honeybee Apis mellifera. Journal of Thermal Biology, 37(8), 587–594. https://doi.org/10.1016/j.jtherbio.2012.07.005
  • Grodzicki, P., & Caputa, M. (2014). Diurnal and seasonal changes in thermal preference of single, isolated bees and small groups of bees (Apis mellifera L.). Journal of Insect Behavior, 27(6), 701–711. https://doi.org/10.1007/s10905-014-9460-6
  • Grodzicki, P., Caputa, M., & Piechowicz, B. (2018). Effect of the own colony odor on olfactory an thermal preferences of the honeybee (Apis mellifera) workers. Apidologie, 49(2), 209–219. https://doi.org/10.1007/s13592-017-0543-1
  • Harrison, J. F., & Fewell, J. H. (2002). Environmental and genetic influences on flight metabolic rate in the honey bee. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 133(2), 323–333. https://doi.org/10.1016/S1095-6433(02)00163-0
  • Heinrich, B. (1974). Thermoregulation in endothermic insects. Science (New York, N.Y.), 185(4153), 747–756. https://doi.org/10.1126/science.185.4153.747
  • Heinrich, B. (1979a). Thermoregulation of African and European honeybees during foraging, attack, and hive exits and returns. Journal of Experimental Biology, 80, 217–229.
  • Heinrich, B. (1979b). Keeping a cool head: honeybee thermoregulation. Science (New York, N.Y.), 205(4412), 1269–1271. https://doi.org/10.1126/science.205.4412.1269
  • Heinrich, B. (1980a). Mechanisms of body-temperature regulation in honeybees, Apis mellifera. I. Regulation of head temperature. Journal of Experimental Biology, 85, 61–72.
  • Heinrich, B. (1980b). Mechanisms of body-temperature regulation in honeybees, Apis mellifera. II. Regulation of thoracic temperature at high air temperatures. Journal of Experimental Biology, 85, 73–87.
  • Heinrich, B. (1993). Hot-headed honeybees. In The hot-blooded insects. Harvard University Press. 292–322.
  • Heinrich, B. (1996). How the honey bee regulates its body temperature. Bee World, 77(3), 130–137. https://doi.org/10.1080/0005772X.1996.11099304
  • Heinrich, B., & Esch, H. (1994). Thermoregulation in Bees. American Scientist, 82, 164–170.
  • Hunt, G. J. (2007). Flight and fight: A comparative view of the neurophysiology and genetics of honey bee defensive behavior. Journal of Insect Physiology, 53(5), 399–410. https://doi.org/10.1016/j.jinsphys.2007.01.010
  • Kaiser, W. (1988). Busy bees need rest too. Behavioural and electrophysiological sleep signs in honeybees. Journal of Comparative Physiology A, 163(5), 565–584. https://doi.org/10.1007/BF00603841
  • Kaiser, W., Faltin, T., & Bayer, G. (2002). Sleep in a temperature gradient — behavioural recordings from forager honeybees. Journal of Sleep Research, 11(Suppl.), 115–116.
  • Kaiser, W., & Steiner-Kaiser, J. (1983). Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect. Nature, 301(5902), 707–709. https://doi.org/10.1038/301707a0
  • Kovac, H., Stabentheiner, A., Hetz, S. K., Petz, M., & Crailsheim, K. (2007). Respiration of resting honeybees. Journal of Insect Physiology, 53(12), 1250–1261. https://doi.org/10.1016/j.jinsphys.2007.06.019
  • Maisonnasse, A., Lenoir, J.-C., Beslay, D., Crauser, D., & Le Conte, Y. (2010). E-β-Ocimene, a Volatile Brood Pheromone Involved in Social Regulation in the Honey Bee Colony (Apis mellifera). PLoS ONE, 5(10), e13531. https://doi.org/10.1371/journal.pone.0013531
  • Moffatt, L. (2000). Changes in the metabolic rate of the foraging honeybee: effect of the carried weight or of the reward rate?. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 186(3), 299–306. https://doi.org/10.1007/s003590050430
  • Moffatt, L. (2001). Metabolic rate and thermal stability during honeybee foraging at different reward rates. The Journal of Experimental Biology, 204(Pt 4), 759–766.
  • Moore, D. (2001). Honey bee circadian clocks: behavioral control from individual workers to whole-colony rhythms. Journal of Insect Physiology, 47(8), 843–857. https://doi.org/10.1016/S0022-1910(01)00057-9
  • Moore, D., Angel, J. E., Cheeseman, I. M., Fahrbach, S., & Robinson, G. E. (1998). Timekeeping in the honey bee colony: integration of circadian rhythms and division of labor. Behavioural Ecology and Sociobiology, 43(3), 147–160. https://doi.org/10.1007/s002650050476
  • Moore, D., & Rankin, M. A. (1983). Diurnal changes in the accuracy of the honeybee foraging rhythm. Biological Bulletin, 164(3), 471–482. https://doi.org/10.2307/1541256
  • Moore, D., & Rankin, M. A. (1985). Circadian locomotor rhythms in individual honeybees. Physiological Entomology, 10(2), 191–197. https://doi.org/10.1111/j.1365-3032.1985.tb00034.x
  • Moore, D., & Rankin, M. A. (1993). Light and temperature entrainment of a locomotor rhythm in honeybees. Physiological Entomology, 18(3), 271–278. https://doi.org/10.1111/j.1365-3032.1993.tb00599.x
  • Moritz, R. F. A., & Southwick, E. E. (1986). Analysis of queen recognition by honey bee workers (Apis mellifera L.) in a metabolic bio-assay. Experimental Biology, 46, 45–49.
  • Nunes, T. M., Nascimento, F. S., Turatti, I. C., Lopes, N. P., & Zucchi, R. (2008). Nestmate recognition in a stingless bee: does the similarity of chemical cues determine guard acceptance?. Animal Behaviour, 75(3), 1165–1171. https://doi.org/10.1016/j.anbehav.2007.08.028
  • Pfeiffer, K. J., & Crailsheim, K. (1998). Drifting of honeybees. Insectes Sociaux, 45(2), 151–167. https://doi.org/10.1007/s000400050076
  • Roberts, S. P., & Harrison, J. F. (1998). Mechanisms of Thermoregulation in Flying Bees. American Zoologist, 38(3), 492–502. https://doi.org/10.1093/icb/38.3.492
  • Roberts, S. P., & Harrison, J. F. (2005). Mechanisms of thermal stability during flight in the honeybee Apis mellifera. Journal of Experimental Biology, 208(22), 4193–1533. https://doi.org/10.1242/jeb.01862
  • Schippers, M.-P., Dukas, R., & McClelland, G. B. (2010). Lifetime- and caste-specific changes in flight metabolic rate and muscle biochemistry of honeybees, Apis mellifera. Journal of comparative physiology. B, Biochemical, Systemic, and Environmental Physiology, 180(1), 45–55. https://doi.org/10.1007/s00360-009-0386-9
  • Schmolz, E., Hoffmeister, D., & Lamprecht, I. (2002). Calorimetric investigations on metabolic rates and thermoregulation of sleeping honeybees (Apis mellifera carnica). Thermochimica Acta, 382(1-2), 221–227. https://doi.org/10.1016/S0040-6031(01)00740-7
  • Stabentheiner, A., Kovac, H., & Brodschneider, R. (2010). Honeybee colony thermoregulation—regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS One, 5(1), e8967. https://doi.org/10.1371/journal.pone.0008967
  • Stabentheiner, A., Kovac, H., & Schmaranzer, S. (2002). Honeybee nestmate recognition: the thermal behaviour of guards and their examinees. The Journal of Experimental Biology, 205(Pt 17), 2637–2642.
  • Stabentheiner, A., Kovac, H., & Schmaranzer, S. (2007). Thermal behaviour of honeybees during aggressive interactions. Ethology, 113(10), 995–1006. https://doi.org/10.1111/j.1439-0310.2007.01403.x
  • Stabentheiner, A., Vollmann, J., Kovac, H., & Crailsheim, K. (2003). Oxygen consumption and body temperature of active and resting honeybees. Journal of Insect Physiology, 49(9), 881–889. https://doi.org/10.1016/S0022-1910(03)00148-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.