344
Views
6
CrossRef citations to date
0
Altmetric
Ecology and Conservation

Historical, current, and future climate niche of the red dwarf honey bee across its native range

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 271-283 | Received 07 Apr 2020, Accepted 08 Dec 2020, Published online: 16 Mar 2021

References

  • Albon, S. D., Irvine, R. J., Halvorsen, O., Langvatn, R., Loe, L. E., Ropstad, E., Veiberg, V., van der Wal, R., Bjørkvoll, E. M., Duff, E. I., Hansen, B. B., Lee, A. M., Tveraa, T., & Stien, A. (2017). Contrasting effects of summer and winter warming on body mass explain population dynamics in a food-limited Arctic herbivore . Global Change Biology, 23(4), 1374–1389. https://doi.org/10.1111/gcb.13435
  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
  • Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D., & Whittaker, J. B. (2002). Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology, 8(1), 1–16. https://doi.org/10.1046/j.1365-2486.2002.00451.x
  • Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo‐absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
  • Bezabih, G., Adgaba, N., Hepburn, H. R., & Pirk, C. W. W. (2014). The territorial invasion of Apis florea in Africa. African Entomology, 22(4), 888–891. https://doi.org/10.4001/003.022.0406
  • Brown, J. L. (2014). SDM toolbox: A python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700. https://doi.org/10.1111/2041-210X.12200
  • Bush, A. B. (2004). Modelling of late quaternary climate over Asia: A synthesis. Boreas, 33(2), 155–163. https://doi.org/10.1111/j.1502-3885.2004.tb01137.x
  • Casey, L. M., Rebelo, H., Rotheray, E., & Goulson, D. (2015). Evidence for habitat and climatic specializations driving the long‐term distribution trends of UK and I rish bumblebees. Diversity and Distributions, 21(8), 864–875. https://doi.org/10.1111/ddi.12344
  • Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D. B., Huang, X., Zhao, Y., Sato, T., John B. Birks, H., Boomer, I., Chen, J., An, C., & Wünnemann, B. (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews, 27(3–4), 351–364. https://doi.org/10.1016/j.quascirev.2007.10.017
  • DeLeo, J. M. (1993, April). Receiver operating characteristic laboratory (ROCLAB): Software for developing decision strategies that account for uncertainty. In 1993 (2nd) International Symposium on Uncertainty Modeling and Analysis (pp. 318–325). IEEE.
  • Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., … E. Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  • Engel, M., Messenzehl, K., & Brückner, H. (2011). Natural environment of the Arabian Peninsula. In S. Vassipoulou & L. Wagner (Eds.), Roads of Arabia - The archaeological treasures of Saudi Arabia (pp. 36–47). Ernst J Wasmuth.
  • Fand, B. B., Sul, N. T., Bal, S. K., & Minhas, P. S. (2015). Temperature impacts the development and survival of common cutworm (Spodoptera litura): Simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLoS One, 10(4), e0124682. https://doi.org/10.1371/journal.pone.0124682
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
  • Fourcade, Y., Åström, S., & Öckinger, E. (2019). Climate and land-cover change alter bumblebee species richness and community composition in subalpine areas. Biodiversity and Conservation, 28(3), 639–653. https://doi.org/10.1007/s10531-018-1680-1
  • Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L., & Zhang, M. (2011). The community climate system model version 4. Journal of Climate, 24(19), 4973–4991. https://doi.org/10.1175/2011JCLI4083.1
  • Ghassemi-Khademi, T. (2014). A review of the biological status of Iranian dwarf honey bees (Apis florea). Journal of Middle East Applied Science and Technology, 13, 508–513.
  • Ghassemi-Khademi, T. (2017). Taxonomy and comparative biology of world and Iranian honey bees. (Vol. 1). ACECR Publication. (in Persian).
  • Ghassemi-Khademi, T. (2011). Evaluation of genetic variability of common honeybees (Apis mellifera L.) based on microsatellite polymorphism, in selected regions in Azerbaijan, Iran [MSc thesis]. Shahid Beheshti University, 131pp.
  • Ghorbani, M. S. (2017). The late Quaternary environmental evolution and the origin of rainy periods in Iran. Kuatirniri-i Iran, 3(2), 189–175. (in Persian).
  • Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science (New York, N.Y.), 347(6229), 1255957 https://doi.org/10.1126/science.1255957
  • Hepburn, H. R., & Radloff, S. E. (2011a). Honeybees of Asia. Springer.
  • Hepburn, H. R., & Radloff, S. E. (2011b). Biogeography of the dwarf honeybees, Apis andreniformis and Apis florea. Apidologie, 42(3), 293–300. https://doi.org/10.1007/s13592-011-0024-x
  • Huang, Q., Fleming, C. H., Robb, B., Lothspeich, A., & Songer, M. (2018). How different are species distribution model predictions?—Application of a new measure of dissimilarity and level of significance to giant panda Ailuropoda melanoleuca. Ecological Informatics, 46, 114–124. https://doi.org/10.1016/j.ecoinf.2018.06.004
  • Kafash, A., Ashrafi, S., Ohler, A., Yousefi, M., Malakoutikhah, S., Koehler, G., & Schmidt, B. R. (2018). Climate change produces winners and losers: Differential responses of amphibians in mountain forests of the Near East. Global Ecology and Conservation, 16, e00471. https://doi.org/10.1016/j.gecco.2018.e00471
  • Kehl, M. (2009). Quaternary climate change in Iran—the state of knowledge. Erdkunde, 63(1), 1–17. https://doi.org/10.3112/erdkunde.2009.01.01
  • Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721
  • Koch, J. B., & General, D. E. M. (2019). A preliminary assessment of bumble bee (Hymenoptera: Apidae) habitat suitability across protected and unprotected areas in the Philippines. Annals of the Entomological Society of America, 112(1), 44–49. https://doi.org/10.1093/aesa/say046
  • Koch, J., Looney, C., Hopkins, B., Lichtenberg, E. M., Sheppard, W. S., & Strange, J. P. (2019). Projected climate change will reduce habitat suitability for bumble bees in the Pacific Northwest. bioRxiv, 610071. https://doi.org/10.1101/610071
  • Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x
  • Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence‐only data. Journal of Biogeography, 40(4), 778–789. https://doi.org/10.2307/23463638
  • Lobo, J. M., & Tognelli, M. F. (2011). Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data. Journal for Nature Conservation, 19(1), 1–7.
  • Lomolino, M. V., Riddle, B. R., Brown, J. H., & Whittaker, R. J. (2016). Biogeography (5th ed.). Sinauer Associates.
  • Maiorano, L., Chiaverini, L., Falco, M., & Ciucci, P. (2019). Combining multi-state species distribution models, mortality estimates, and landscape connectivity to model potential species distribution for endangered species in human dominated landscapes. Biological Conservation, 237, 19–27. https://doi.org/10.1016/j.biocon.2019.06.014
  • McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C., & Cushman, S. A. (2016). Multi-scale habitat selection modeling: A review and outlook. Landscape Ecology, 31(6), 1161–1175. https://doi.org/10.1007/s10980-016-0374-x
  • Monserud, R., & Leemans, R. (1992). Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62(4), 275–293. https://doi.org/10.1016/0304-3800(92)90003-W
  • Moradi, M., & Kandemir, I. (2005). Observations on Apis florea, the Dwarf Honey Bee, in Iran. American Bee Journal, 145(6), 498–502.
  • Morales, N. S., Fernández, I. C., & Baca-González, V. (2017). MaxEnt's parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ, 5, e3093. https://doi.org/10.7717/peerj.3093
  • Mossadegh, M. S. (1993). New geographical distribution line of Apis florea F. in Iran. In Asian apiculture (pp. 64–66). Wincaws Press.
  • Mossadegh, M. S. (2014). Know the dwarf honey bee, Apis (Micrapis) florea. F. Pakpendar Publication.
  • Motamed, A. (2011). Quaternary geography (2nd ed.). Publication of SAMT (The organization for researching and composing university textbooks in the humanities).
  • Musolin, D. L., Tougou, D., & Fujisaki, K. (2010). Too hot to handle? Phenological and life‐history responses to simulated climate change of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae).Global Change Biology, 16(1), 73–87. https://doi.org/10.1111/j.1365-2486.2009.01914.x
  • Naeem, M., Yuan, X., Huang, J., & An, J. (2018). Habitat suitability for the invasion of Bombus terrestris in East Asian countries: A case study of spatial overlap with local Chinese bumblebees. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-29414-6
  • Oldroyd, B. P., & Nanork, P. (2009). Conservation of Asian honey bees. Apidologie, 40(3), 296–312. https://doi.org/10.1051/apido/2009021
  • Partap, U. (2011). The pollination role of honeybees. In H. R. Hepburn & S. E. Radloff (Eds.), Honeybees of Asia (pp. 227–255). Springer.
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Rabinowitz, A., & Zeller, K. A. (2010). A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biological Conservation, 143(4), 939–945. https://doi.org/10.1016/j.biocon.2010.01.002
  • Radloff, S. E., Hepburn, H. R., & Engel, M. S. (2011). The Asian species of Apis. In H. R. Hepburn & S. E. Radloff (Eds.), Honeybees of Asia (1st ed., pp. 1–22). Springer.
  • Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography, 41(4), 629–643. https://doi.org/10.1111/jbi.12227
  • Redding, D. W., Lucas, T. C., Blackburn, T. M., & Jones, K. E. (2017). Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data. PloS One, 12(11), e0187602. https://doi.org/10.1371/journal.pone.0187602
  • Robinet, C., & Roques, A. (2010). Direct impacts of recent climate warming on insect populations. Integrative Zoology, 5(2), 132–142. https://doi.org/10.1111/j.1749-4877.2010.00196.x
  • Russo, L. (2016). Positive and negative impacts of non-native bee species around the world. Insects, 7(4), 69. https://doi.org/10.3390/insects7040069
  • Ruttner, F. (1988). Biogeography and taxonomy of honey bees. Springer Verlag.
  • Ruttner, F., Mossadegh, M. S., & Kauhausen-Keller, D. (1995). Distribution and variation of size of Apis florea F in Iran. Apidologie, 26(6), 477–486. https://doi.org/10.1051/apido:19950604
  • Ruttner, F., Pourasghar, D., & Kauhausen, D. (1985). DIE HONIGBIENEN DES IRAN. I. APIS FLOREA FABRICIUS. Apidologie, 16(2), 119–138. https://doi.org/10.1051/apido:19850203
  • Sathiamurthy, E., & Voris, H. K. (2006). Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. Tropical Natural History, (Supp 2), 1–44.
  • Sexton, J. P., McIntyre, P. J., Angert, A. L., & Rice, K. J. (2009). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40(1), 415–436. https://doi.org/10.1146/annurev.ecolsys.110308.120317
  • Shebl, M. A. (2017). Discovery of Apis florea colonies in northeastern Egypt. African Entomology, 25(1), 248–250. https://doi.org/10.4001/003.025.0248
  • Silva, D. P., Castro, A. C. F., Vilela, B., Ong, X. R., Thomas, J. C., Alqarni, A. S., Engel, M. S., & Ascher, J. S. (2020). Colonizing the east and the west: Distribution and niche properties of a dwarf Asian honey bee invading Africa, the Middle East, the Malay Peninsula, and Taiwan. Apidologie, 51(1), 75–87. https://doi.org/10.1007/s13592-019-00711-x
  • Smith, D. R. (2011). Asian honeybees and mitochondrial DNA. In H. R. Hepburn & S. E. Radloff (Eds.), Honeybees of Asia (pp. 69–93). Springer.
  • Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115–1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x
  • Soberon, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1–10. https://doi.org/10.17161/bi.v2i0.4
  • Stanton, J. C., Shoemaker, K. T., Pearson, R. G., & Akçakaya, H. R. (2015). Warning times for species extinctions due to climate change. Global Change Biology, 21(3), 1066–1077. https://doi.org/10.1111/gcb.12721
  • Steiner, W. E. (2017). A scientific note on the arrival of the dwarf honeybee, Apis florea (Hymenoptera: Apidae), in Djibouti. Apidologie, 48(5), 657–659. https://doi.org/10.1007/s13592-017-0511-9
  • Su, J., Aryal, A., Nan, Z., & Ji, W. (2015). Climate change-induced range expansion of a subterranean rodent: Implications for rangeland management in Qinghai-Tibetan Plateau. PLoS One, 10(9), e0138969. https://doi.org/10.1371/journal.pone.0138969
  • Vale, C. G., Tarroso, P., & Brito, J. C. (2014). Predicting species distribution at range margins: Testing the effects of study area extent, resolution and threshold selection in the Sahara–Sahel transition zone. Diversity and Distributions, 20(1), 20–33. https://doi.org/10.1111/ddi.12115
  • van Beest, F. M., & Milner, J. M. (2013). Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate. PloS One, 8(6), e65972. https://doi.org/10.1371/journal.pone.0065972
  • Vaghefi, S. A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., Yang, H., & Abbaspour, K. C. (2019). The future of extreme climate in Iran. Scientific Reports, 9(1), 1–11.
  • Wang, C., Hawthorne, D., Qin, Y., Pan, X., Li, Z., & Zhu, S. (2017). Impact of climate and host availability on future distribution of Colorado potato beetle. Scientific Reports, 7(1), 4489. https://doi.org/10.1038/s41598-017-04607-7
  • Wang, A. R., Kim, J. S., Kim, M. J., Kim, H. K., Choi, Y. S., & Kim, I. (2018). Comparative description of mitochondrial genomes of the honey bee Apis (Hymenoptera: Apidae): Four new genome sequences and Apis phylogeny using whole genomes and individual genes. Journal of Apicultural Research, 57(4), 484–503. https://doi.org/10.1080/00218839.2018.1494885
  • Wasserman, T. N., Cushman, S. A., Littell, J. S., Shirk, A. J., & Landguth, E. L. (2013). Population connectivity and genetic diversity of American marten (Martes Americana) in the United States northern Rocky Mountains in a climate change context. Conservation Genetics, 14(2), 529–541. https://doi.org/10.1007/s10592-012-0336-z
  • Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106(Supplement_2), 19729–19736. https://doi.org/10.1073/pnas.0901639106
  • Young, B. E., Hall, K. R., Byers, E., Gravuer, K., Hammerson, G., Redder, A., & Szabo, K. (2012). Rapid assessment of plant and animal vulnerability to climate change (pp. 129–152). University of Chicago Press.
  • Zewdu, A., Desalegn, B., Amssalu, B., Gebreamlak, B., & Tolera, K. (2016). Assessment of alien honeybee species (Apis florea) in north west and northern ethiopia. Greener Journal of Agricultural Sciences, 6(3), 093–101. https://doi.org/10.15580/GJAS.2016.3.012016019
  • Zúñiga-Vega, J. J., Zamora-Abrego, J. G., García-Vázquez, U. O., de Oca, A. N. M., & Martins, E. P. (2017). Evolutionary patterns in life-history traits of lizards of the genus Xenosaurus. Herpetological Journal, 27(4), 346–360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.