166
Views
0
CrossRef citations to date
0
Altmetric
Physiology, biochemistry, and chemical ecology

No effect of abscisic and p-coumaric acids as food supplements and stimulants of the immunological system of Africanized hybrids of Apis mellifera

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 487-499 | Received 08 Feb 2021, Accepted 09 Aug 2021, Published online: 18 Dec 2021

References

  • Anderson, D., & Trueman, J. (2000). Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental & Applied Acarology, 24(3), 165–189. https://doi.org/10.1023/A:1006456720416
  • Azzouz-Olden, F., Hunt, A., & Degrandi-Hoffman, G. (2018). Transcriptional response of honey bee (Apis mellifera) to differential nutritional status and Nosema infection. BMC Genomics, 19(1), 620–628. https://doi.org/10.1186/s12864-018-5007-0
  • Baracchi, D., Brown, J. F., & Chittka, L. (2015). Behavioural evidence for self-medication in bumblebees? F100Research, 4(73), 1–22. https://doi.org/10.12688/f1000research.6262.3
  • Bernklau, E., Bjostad, L., Hogeboom, A., Carlisle, A., & Arathi, H. (2019). Dietary phytochemicals, honey bee longevity and pathogen tolerance. Insects, 10(1), 12–14. https://doi.org/10.3390/insects10010014
  • Botías, C., Martín-Hernández, R., Barrios, L., Meana, A., & Higes, M. (2013). Screening alternative therapies to control Nosemosis type C in honey bee (Apis mellifera iberiensis) colonies. Research in Veterinary Science, 95(3), 1041–1045. https://doi.org/10.1016/j.rvsc.2013.09.012
  • Buitimea-Cantúa, N. E., Torres-Chávez, P. I., Ramírez-Wong, B., Ledesma-Osuna, A. I., Gutiérrez-Uribe, J. A., Serna-Guerrero, D. A., & Serna-Saldívar, S. O. (2018). Ferulic, p-cumaric, diferulic and triferulic acids contets of corn tortillas prepared with extruded corn flour and enriched with sorghum (Sorghum bicolor (L.) Moench) bran. Journal of Food Measurement and Characterization, 12(3), 1633–1640. https://doi.org/10.1007/s11694-018-9778-4
  • Cueto, G. S. A., López, V. G., Orozco, C. C., Gómez, G. S. D., Moreno, T. K., Espinoza, B. K. O., Guerrero, V. J. G., Silva, P. L. E., Trasviña, M. E., & Monge, N. F. J. (2019). Prevalence and geographical distribution of Nosema apis and Nosema ceranae in apiaries of Northwest Mexico using a duplex real-time PCR with melting-curve analysis curve analysis. Journal of Apicultural Research, 59(2), 195–203. https://doi.org/10.1080/00218839.2019.1676999.
  • de Jong, D., de Andrea, R. D., & Gonçalves, L. S. (1982). A comparative analysis of shaking solutions for the detection of Varroa jacobsoni on adult honey bees. Apidologie, 13(3), 297–306. https://doi.org/10.1051/apido:19820308
  • Delaplane, K. S., Dag, A., Danka, R. G., Freitas, B. M., Garibaldi, L. A., Goodwin, R. M., & Hormaza, J. I. (2013). Standard methods for estimating strength parameters of Apis mellifera colonies. Journal of Apicultural Research, 52(4), 1–12. https://doi.org/10.3896/IBRA.1.52.1.03 https://doi.org/10.3896/IBRA.1.52.4.12
  • Diario Oficial de la Federación. (1999). Norma Oficial Mexicana NOM-056-ZOO-1995, Especificaciones técnicas para las pruebas diagnósticas que realicen los laboratorios de pruebas aprobados en materia zoosanitaria. https://www.gob.mx/cms/uploads/attachment/file/563490/NOM-056-ZOO-1995.pdf
  • Diario Oficial de la Federación. (2005). Modificación a la Norma Oficial Mexicana NOM-001-ZOO-1994, Campaña Nacional contra la Varroasis de las Abejas. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:SEGUNDA+SECCION+SECRETARIA+DE+AGRICULTURA+,+GANADERIA+,#0
  • Dietemann, V., Nazzi, F., Martin, S. J., Anderson, D. L., Locke, B., Delaplane, K. S., Wauquiez, Q., Tannahill, C., Frey, E., Ziegelmann, B., Rosenkranz, P., & Ellis, J. D. (2013). Standard methods for varroa research. Journal of Apicultural Research, 52(1), 1–55. https://doi.org/10.3896/IBRA.1.52.1.09
  • Dussaubat, C., Brunet, J. L., Higes, M., Colbourne, J. K., Lopez, J., Choi, J. H., Martin-Hernandez, R., Botias, C., Cousin, M., Mcdonnell, C., Bonnet, M., Belzunces, L. P., Moritz, R. F. A., Le Conte, Y., & Alaux, C. (2012). Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS One, 7(5), e37017–11. https://doi.org/10.1371/journal.pone.0037017
  • Fleites-Ayil, F. A., Quezada-Euán, J. J., & Medina-Medina, L. A. (2018). Onset of foraging and lifespan of Africanized honey bees (Apis mellifera) infected with different levels of Nosema ceranae spores in Neotropical Mexico. Apidologie, 49(6), 781–788. https://doi.org/10.1007/s13592-018-0602-2
  • Fries, I., Chauzat, M., Chen, Y., Doublet, V., Genersch, E., Gisder, S., Higes, M., Mcmahon, D., Martín-Hernández, R., Natsopoulou, M., Paxton, R., Tanner, G., Webster, T., & Williams, G. (2013). Standard methods for Nosema research. Journal of Apicultural Research, 52(1), 1–29. https://doi.org/10.3896/IBRA.1.52.1.14
  • Garnery, L., Solignac, M., Celebrano, G., & Cornuet, J. (1993). A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia, 49(11), 1016–1021. https://doi.org/10.1007/BF02125651
  • Garrido, P. M., Martin, M. L., Negri, P., & Eguaras, M. J. (2013). A standardized method to extract and store haemolymph from Apis mellifera and the ectoparasite Varroa destructor for protein analysis. Journal of Apicultural Research, 52(2), 67–68. https://doi.org/10.3896/IBRA.1.52.2.13
  • Gisder, S., Schüler, V., Horchler, L. L., Groth, D., & Genersch, E. (2017). Long-term temporal trends of Nosema spp. infection prevalence in Northeast Germany: Continuous spread of Nosema ceranae, an emerging pathogen of honey bees (Apis mellifera), but no general replacement of Nosema apis. Frontiers in Cellular and Infection Microbiology, 7(301), 301–314. https://doi.org/10.3389/fcimb.2017.00301
  • Goblirsch, M., Huang, Z. Y., & Spivak, M. (2013). Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One, 8(3), e58165–8. https://doi.org/10.1371/journal.pone.0058165
  • Guzman-Novoa, E., Emsen, B., Unger, P., Espinosa-Montaño, L. G., & Petukhova, T. (2012). Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.). Journal of Invertebrate Pathology, 110(3), 314–320. https://doi.org/10.1016/j.jip.2012.03.020
  • Harpur, B. A., Kadri, S. M., Orsi, R. O., Whitfield, C. W., & Zayed, A. (2020). Defense response in Brazilian honey bees (Apis mellifera scutellata × spp.) is underpinned by complex patterns of admixture. Genome Biology and Evolution, 12(8), 1367–1377. https://doi.org/10.1093/gbe/evaa128
  • Huang, W., Solter, L., Aronstein, K., & Huang, Z. (2015). Infectivity and virulence of Nosema ceranae and Nosema apis in commercially available North American honey bees. Journal of Invertebrate Pathology, 124, 107–113. https://doi.org/10.1016/j.jip.2014.10.006
  • Isidorov, V. A., Isidorova, A. G., Sczczepaniak, L., & Czyżewska, U. (2009). Gas chromatographic-mass spectrometric investigation of the chemical composition of beebread. Food Chemistry, 115(3), 1056–1063. https://doi.org/10.1016/j.foodchem.2008.12.025
  • Jorge, R., Furtado, N. A. J. C., Sousa, J. P. B. D., Silva, F. A. A., Gregório, J. L. E., Martins, C. H. G., Soares, A. E. E., Bastos, J. K., Cunha, W. R., & Silva, M. L. A. (2008). Brazilian propolis: Seasonal variation of the prenylated p-coumaric acids and antimicrobial activity. Pharmaceutical Biology, 46(12), 889–893. https://doi.org/10.1080/13880200802370373
  • Kerr, W. E. (1967). The history of the introduction of Africanized bees in Brazil. South African Bee Journal, 39, 3–5.
  • Kumazawa, S., Hamasaka, T., & Nakayama, T. (2004). Antioxidant activity of propolis of various geographic origins. Food Chemistry, 84(3), 329–339. https://doi.org/10.1016/S0308-8146(03)00216-4
  • Larsen, A., Reynaldi, F. J., & Guzmán-Novoa, E. (2019). Bases del sistema inmune de la abeja melífera (Apis mellifera). Revista Mexicana de Ciencias Pecuarias, 10(3), 705–728. https://doi.org/10.22319/rmcp.v10i3.4785
  • Llanderal, C. C., & Cibrián, J. T. (1983). Prácticas de fisiología de insectos (119 p.). Colegio de Postgraduados.
  • Mao, W., Schuler, M. A., & Berenbaum, M. R. (2013). Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8842–8846. https://doi.org/10.1073/pnas.1303884110
  • Mao, W., Schuler, M. A., & Berenbaum, M. R. (2015). A dietary phytochemical alters caste-associated gene expression in honey bees. Science Advances, 1(7), 1–10. https://doi.org/10.1126/sciadv.1500795
  • Martín-Hernández, R., Meana, A., Prieto, L., Martinez, S., Garrido-Bailon, E., & Higes, M. (2007). Outcome of colonization of Apis mellifera by Nosema ceranae. Applied and Environmental Microbiology, 73(20), 6331–6338. https://doi.org/10.1128/AEM.00270-07
  • Medina-Flores, C. A., Guzmán-Novoa, E., Espinosa-Montaño, L. G., Uribe-Rubio, J. L., Gutiérrez-Luna, R., & Gutiérrez-Piña, F. J. (2014). Frecuencia de varroosis y nosemosis en colonias de abejas melíferas (Apis mellifera). Revista Chapingo Serie Ciencias Forestales y Del Ambiente, XX(3), 159–167. https://doi.org/10.5154/r.rchscfa.2013.08.028
  • Mendiburu, F. (2020). Agricolae: Statistical procedures for agricultural research. R package version 1.3-3. https://CRAN.R-project.org/package=agricolae
  • Moritz, R. F. A., Cornuet, J.-M., Kryger, P., Garnery, L., Hepburn, H. R. (1994). Mitochondrial DNA variability in south African honey bees (Apis mellifera L.). Apidologie, 25, 169–178.
  • Nardi, J. B., Pilas, B., Mark, C., Zhuang, S., Garsha, K., & Kanost, M. R. (2006). Neuroglian-positive plasmatocytes of Manduca sexta and the initiation of hemocyte attachment to foreign surfaces. Developmental and Comparative Immunology, 30(5), 447–462. https://doi.org/10.1016/j.dci.2005.06.026
  • Nation, J. L. (2016). Immunity in insect physiology and biochemistry (3rd ed., pp. 433–447). CRC Press.
  • Negri, P., Maggi, M., Correa-Aragunde, N., Brasesco, C., Eguaras, M., & Lamattina, L. (2013). Nitric oxide participates at the first steps of Apis mellifera cellular immune activation in response to non-self recognition. Apidologie, 44(5), 575–585. https://doi.org/10.1007/s13592-013-0207-8
  • Negri, P., Maggi, M. D., Ramirez, L. D., Feudis, L., Szwarski, N., Quintana, S., Eguaras, M. J., & Lamattina, L. (2015). Abscisic acid enhances the immune response in Apis mellifera and contributes to the colony fitness. Apidologie, 46(4), 542–557. https://doi.org/10.1007/s13592-014-0345-7
  • Negri, P., Quintana, S., Maggi, M., Szawarski, N., Lamattina, L., & Eguaras, M. (2014). Apis mellifera hemocytes generate increased amounts of nitric oxide in response to wounding/encapsulation. Apidologie, 45(5), 610–617. https://doi.org/10.1007/s13592-014-0279-0
  • Nganso, B. T., Fombong, A. T., Yusuf, A. A., Pirk, C. W. W., Stuhl, C., & Torto, B. (2017). Hygienic and grooming behaviors in African and European honey bees - New damage categories in Varroa destructor. PLoS One, 12(6), e0179329–14. https://doi.org/10.1371/journal.pone.0179329
  • Palmer-Young, E. C., Sadd, B. M., Irwin, R. E., & Adler, L. S. (2017). Synergistic effects of floral phytochemicals against a bumble bee parasite. Ecology and Evolution, 7(6), 1836–1849. https://doi.org/10.1002/ece3.2794
  • Prendas-Rojas, J., Figueroa-Mata, G., Ramírez-Montero, M., Calderón-Fallas, R., Ramírez-Bogantes, M., & Travieso- González, C. (2018). Diagnóstico automático de infección por nosemiasis en abejas melíferas mediante procesado de imágenes. Revista Tecnología en Marcha, 31(2), 14–25. https://doi.org/10.18845/tm.v31i2.3621
  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., Lim, D., Joklik, J., Cicero, J. M., Ellis, J. D., Hawthorne, D., & van Engelsdorp, D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1792–1801. https://doi.org/10.1073/pnas.1818371116
  • Reyes-Quintana, M., Espinosa-Montaño, L. G., Prieto-Merlos, D., Koleoglu, G., Petukhova, T., Correa-Benítez, A., & Guzman-Novoa, E. (2019). Impact of Varroa destructor and deformed wing virus on emergence, cellular immunity, wing integrity and survivorship of Africanized honey bees in Mexico. Journal of Invertebrate Pathology, 164, 43–48. https://doi.org/10.1016/j.jip.2019.04.009
  • Richards, E. H., Jones, B., & Bowman, A. (2011). Salivary secretions from the honeybee mite, Varroa destructor: Effects on insect haemocytes and preliminary biochemical characterization. Parasitology, 138(5), 602–608. https://doi.org/10.1017/S0031182011000072
  • Rinderer, T. E., Buco, S. M., Rubink, W. L., Daly, H. V., Stelzer, J. A., Riggio, R. M., & Baptista, F. C. (1993). Morphometric identification of Africanized and European honey bees using large reference population. Apidologie, 24(6), 569–585. https://doi.org/10.1051/apido:19930605
  • Salamanca, G. G. (2009). Variabilidad genética del and mitocondrial de poblaciones de abejas Apis mellifera (Hymenoptera: Apidae) en Colombia. Zootecnia Tropical, 27(4), 373–382.
  • Sarkaria, D., Bettini, S., & Patton, R. L. (1951). A rapid staining method for clinical study of cockroach blood cells. The Canadian Entomologist, 83(12), 329–332. https://doi.org/10.4039/Ent83329-12
  • Schmid, M. R., Brockmann, A., Pirk, C. W. W., Stanley, D. W., & Tautz, J. (2008). Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. Journal of Insect Physiology, 54(2), 439–444. https://doi.org/10.1016/j.jinsphys.2007.11.002
  • Smith, D. R., Taylor, O. R., & Brown, W. M. (1989). Neotropical Africanized honey bees have African mitochondrial DNA. Nature, 339(6221), 213–215. https://doi.org/10.1038/339213a0
  • Szawarski, N., Saez, A., Domínguez, E., Dickson, R., de Matteis, Á., Eciolaza, C., Justel, M., Aliano, A., Solar, P., Bergara, I., Pons, C., Bolognesi, A., Carna, G., Garcia, W., Garcia, O., Eguaras, M., Lamattina, L., Maggi, M., & Negri, P. (2019). Effect of abscisic acid (ABA) combined with two different beekeeping nutritional strategies to confront overwintering: Studies on honey bees’ population dynamics and nosemosis. Insects, 10(10), 329–314. https://doi.org/10.3390/insects10100329
  • Tossi, V., Cassia, R., Bruzzone, S., Zocchi, E., & Lamattina, L. (2012). ABA says NO to UV-B: A universal response? Trends in Plant Science, 17(9), 510–517. https://doi.org/10.1016/j.tplants.2012.05.007
  • Waś, E., Szczęsna, T., Rybak-Chmielewska, H., Teper, D., & Jaśkiewicz, K. (2017). Application of HPLC-DAD technique for determination of phenolic compounds in bee pollen loads. Journal of Apicultural Science, 61(1), 153–162. https://doi.org/10.1515/jas-2017-0009
  • Woodward, D. (2007). Queen bee: Biology, reading and breeding. Balclutha, New Zealand (137 pp.).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.