200
Views
1
CrossRef citations to date
0
Altmetric
Genetics and breeding

Comparative analysis of reference genes in honey bees, Apis cerana and Apis mellifera

, ORCID Icon, , , , , , , & ORCID Icon show all
Pages 822-832 | Received 14 Apr 2021, Accepted 17 Dec 2021, Published online: 24 Mar 2022

References

  • Andersen, C. L., Jensen, J. L., & Ørntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64(15), 5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496
  • Collins, C., Patel, M. V., Colvin, J., Bailey, D., & Seal, S. (2014). Identification and evaluation of suitable reference genes for gene expression studies in the whitefly Bemisia tabaci (Asia I) by reverse transcription quantitative realtime PCR. Journal of Insect Science (Online), 14, 63. https://doi.org/10.1093/jis/14.1.63
  • Deng, Y., Zhao, H., Yang, S., Zhang, L., Zhang, L., & Hou, C. (2020). Screening and validation of reference genes for RT-qPCR under different honey bee viral infections and dsRNA treatment. Frontiers in Microbiology, 11, 1715. https://doi.org/10.3389/fmicb.2020.01715
  • Feuer, R., Vlaic, S., Arlt, J., Sawodny, O., Dahmen, U., Zanger, U. M., & Thomas, M. (2015). LEMming: A linear error model to normalize parallel quantitative real-time PCR (qPCR) data as an alternative to reference gene based methods. PLoS One, 10(9), e0135852. https://doi.org/10.1371/journal.pone.0135852
  • Freitas, F. C. P., Depintor, T. S., Agostini, L. T., Luna-Lucena, D., Nunes, F. M. F., Bitondi, M. M. G., Simões, Z. L. P., & Lourenço, A. P. (2019). Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in three stingless bee species (Hymenoptera: Apidae: Meliponini). Scientific Reports, 9(1), 17692.
  • Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11(1), 1–21. https://doi.org/10.1080/00401706.1969.10490657
  • Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., & Vandesompele, J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology, 8(2), R19. https://doi.org/10.1186/gb-2007-8-2-r19
  • Hornik, K. (2011). The R FAQ. ISBN 3-900051-08-9, 2011. <http://CRAN.R-project.org/doc/FAQ/R-FAQ.html>.
  • Huggett, J., Dheda, K., Bustin, S., & Zumla, A. (2005). Real-time RT-PCR normalisation; strategies and considerations. Genes and Immunity, 6(4), 279–284. https://doi.org/10.1038/sj.gene.6364190
  • Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 285(1870), 20172140. https://doi.org/10.1098/rspb.2017.2140
  • Jeon, J. H., Moon, K. H., Kim, Y. H., & Kim, Y. H. (2020). Reference gene selection for qRT-PCR analysis of season- and tissue-specific gene expression profiles in the honey bee Apis mellifera. Scientific Reports, 10(1), 13935.
  • Klein, A.-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings. Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721
  • Kozera, B., & Rapacz, M. (2013). Reference genes in real-time PCR. Journal of Applied Genetics, 54(4), 391–406. https://doi.org/10.1007/s13353-013-0173-x
  • Lee, S. H., & Kim, Y. H. (2017). Comparative proteome analysis of honey bee workers between overwintering and brood-rearing seasons. Journal of Asia-Pacific Entomology., 20(3), 984–995. https://doi.org/10.1016/j.aspen.2017.07.011
  • Liu, C., Yamamoto, K., Cheng, T. C., Kadono-Okuda, K., Narukawa, J., Liu, S. P., Han, Y., Futahashi, R., Kidokoro, K., Noda, H., Kobayashi, I., Tamura, T., Ohnuma, A., Banno, Y., Dai, F. Y., Xiang, Z. H., Goldsmith, M. R., Mita, K., & Xia, Q. Y. (2010). Repression of tyrosine hydroxylase is responsible for the sex-linked chocolate mutation of the silkworm, Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America, 107(29), 12980–12985. https://doi.org/10.1073/pnas.1001725107
  • Lord, J. C., Hartzer, K., Toutges, M., & Oppert, B. (2010). Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. Journal of Microbiological Methods, 80(2), 219–221. https://doi.org/10.1016/j.mimet.2009.12.007
  • Lourenço, A. P., Mackert, A., Cristino, A. S., & Simoes, Z. L. P. (2008). Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie, 39(3), 372–385. https://doi.org/10.1051/apido:2008015
  • Moon, K. H., Lee, S. H., & Kim, Y. H. (2018a). Validation of quantitative real-time PCR reference genes for the determination of seasonal and labor-specific gene expression profiles in the head of Western honey bee, Apis mellifera. PLoS One, 13(7), e0200369. https://doi.org/10.1371/journal.pone.0200369
  • Moon, K. H., Lee, S. H., & Kim, Y. H. (2018b). Evaluation of reference genes for quantitative real-time PCR to investigate seasonal and labor-specific expression profiles of the honey bee abdomen. Journal of Asia-Pacific Entomology., 21(4), 1350–1358. https://doi.org/10.1016/j.aspen.2018.10.014
  • Niu, J. Z., Cappelle, K., de Miranda, J. R., Smagghe, G., & Meeus, I. (2014). Analysis of reference gene stability after Israeli acute paralysis virus infection in bumblebees Bombus terrestris. Journal of Invertebrate Pathology, 115, 76–79.
  • Nonis, A., De Nardi, B., & Nonis, A. (2014). Choosing between RT-qPCR and RNA-seq: A back-of-the-envelope estimate towards the definition of the break-even-point. Analytical and Bioanalytical Chemistry, 406(15), 3533–3536. https://doi.org/10.1007/s00216-014-7687-x
  • Pabinger, S., Rödiger, S., Kriegner, A., Vierlinger, K., & Weinhäusel, A. (2014). A survey of tools for the analysis of quantitative PCR (qPCR) data. Biomolecular Detection and Quantification, 1(1), 23–33. https://doi.org/10.1016/j.bdq.2014.08.002
  • Park, Y., Kim, J., Choi, J. R., Song, J., Chung, J. S., & Lee, K. A. (2008). Evaluation of multiplex PCR assay using dual priming oligonucleotide system for detection mutation in the Duchenne muscular dystrophy gene. The Korean Journal of Laboratory Medicine, 28(5), 386–391. https://doi.org/10.3343/kjlm.2008.28.5.386
  • Pendleton, R. G., Rasheed, A., Sardina, T., Tully, T., & Hillman, R. (2002). Effects of tyrosine hydroxylase mutants on locomotor activity in Drosophila: A study in functional genomics. Behavior Genetics, 32(2), 89–94. https://doi.org/10.1023/a:1015279221600
  • Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-excel-based tool using pair-wise correlations. Biotechnology Letters, 26(6), 509–515. https://doi.org/10.1023/b:bile.0000019559.84305.47
  • Reim, T., Thamm, M., Rolke, D., Blenau, W., & Scheiner, R. (2013). Suitability of three common reference genes for quantitative real-time PCR in honey bees. Apidologie, 44(3), 342–350. https://doi.org/10.1007/s13592-012-0184-3
  • Rozen, S., & Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology (Clifton, N.J.), 132, 365–386. https://doi.org/10.1385/1-59259-192-2:365
  • Scharlaken, B., de Graaf, D. C., Goossens, K., Brunain, M., Peelman, L. J., & Jacobs, F. (2008). Reference gene selection for insect expression studies using quantitative real-time PCR: The head ofthe honeybee, Apis mellifera, after a bacterial challenge. Journal of Insect Science., 8(33), 1–10. https://doi.org/10.1673/031.008.3301
  • Shakeel, M., Rodriguez, A., Tahir, U. B., & Jin, F. (2018). Gene expression studies of reference genes for quantitative real-time PCR: An overview in insects. Biotechnology Letters, 40(2), 227–236. https://doi.org/10.1007/s10529-017-2465-4
  • Silver, N., Best, S., Jiang, J., & Thein, S. L. (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 7, 33. https://doi.org/10.1186/1471-2199-7-33
  • Spiess, A. N., & Ritz, C. (2010). qpcR: Modelling and analysis of real-time PCR data. R package version 1.3-4.
  • Toutges, M. J., Hartzer, K., Lord, J., & Oppert, B. (2010). Evaluation of reference genes for quantitative polymerase chain reaction across life cycle stages and tissue types of Tribolium castaneum. Journal of Agricultural and Food Chemistry, 58(16), 8948–8951. https://doi.org/10.1021/jf101603j
  • Valasek, M. A., & Repa, J. J. (2005). The power of real-time PCR. Advances in Physiology Education, 29(3), 151–159. https://doi.org/10.1152/advan.00019.2005
  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), RESEARCH0034. https://doi.org/10.1186/gb-2002-3-7-research0034
  • Xie, F., Xiao, P., Chen, D., Xu, L., & Zhang, B. (2012). Mirdeepfinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology, 80(1), 75–84. https://doi.org/10.1007/s11103-012-9885-2
  • Yang, Y., Wang, Y. H., Chen, X. E., Tian, D., Xu, X., Li, K., Huang, Y. P., & He, L. (2018). CRISPR/Cas9-mediated tyrosine hydroxylase knockout resulting in larval lethality in agrotis ipsilon. Insect Science, 25(6), 1017–1024. https://doi.org/10.1111/1744-7917.12647
  • Zhang, H. H., Zhang, Q. W., Idrees, A., Lin, J., Song, X. S., Ji, Q. E., Du, Y. G., Zheng, M. L., & Chen, J. H. (2019). Tyrosine hydroxylase is crucial for pupal pigmentation in zeugodacus tau (walker) (diptera: tephritidae). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 231, 11–19. https://doi.org/10.1016/j.cbpb.2019.01.017
  • Zhao, S., & Fernald, R. D. (2005). Comprehensive algorithm for quantitative real-time polymerase chain reaction. Journal of Computational Biology : A Journal of Computational Molecular Cell Biology, 12(8), 1047–1064. https://doi.org/10.1089/cmb.2005.12.1047

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.